激活函数:将神经网络上一层的输入,经过神经网络层的非线性变换转换后,通过激活函数,得到输出。常见的激活函数包括:sigmoid, tanh, relu等。https://blog.csdn.net/u013250416/article/details/80991831 损失函数:度量神经网络 ...
目录 . 激活函数 . . 为什么需要激活函数 激励函数 . . . ReLU . . . sigmod . . . tanh . . Pytorch常见激活函数 . 损失函数 . . Keras内置的损失函数 . . . Keras core Loss . . . mean squared error . . . mean absolute error . . . binary crossen ...
2020-09-28 11:56 0 480 推荐指数:
激活函数:将神经网络上一层的输入,经过神经网络层的非线性变换转换后,通过激活函数,得到输出。常见的激活函数包括:sigmoid, tanh, relu等。https://blog.csdn.net/u013250416/article/details/80991831 损失函数:度量神经网络 ...
一、激活函数 1、从ReLU到GELU,一文概览神经网络的激活函数: https://zhuanlan.zhihu.com/p/98863801 2、tensorflow使用激活函数:一种是作为某些层的activation参数指定,另一种是显式添加layers.Activation激活层 ...
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读《 Python 机器学习实战 》。而深度学习开始只是机器学习 ...
神经网络的复杂度 1.空间复杂度 层数 = 隐藏层的层数 + 1个输出层 总参数 = 总w + 总b 2.时间复杂度 乘加运算次数 = 总w 指数衰减学习率 ...
1. 激活函数 1.1 各激活函数曲线对比 常用激活函数: 1.2 各激活函数优缺点 sigmoid函数 优点:在于输出映射在(0,1)范围内,单调连续,适合用作输出层,求导容易 缺点:一旦输入落入饱和区,一阶导数接近0,就可能产生 ...
1、损失函数主要分为回归损失函数和分类损失函数。 回归: (1)L2损失(均方误差)MSE (2)L1损失(平均绝对值误差)MAE---考虑方向---->平均偏差MBE (3)Huber损失(平滑的平均绝对误差) (4)Log-Cosh损失 (5)分位数损失。更关注区间预测 分类 ...
激活函数 各激活函数曲线对比 常用激活函数: 各激活函数优缺点 sigmoid函数 tanh函数 relu函数 elu函数 softplus函数 softmax函数 dropout函数 一般规则 损失 ...
[学习笔记] 根据上面的学习,我们已经知道,当我们接到客户的需求,让我们做识别,判断或者预测时,我们需要最终交付给客户我们的神经网络模型。其实我们千辛万苦训练出来的神经网络模型,就是从输入到输出的一个神秘未知函数映射。在大多数情况下,我们并不知道这个真正的函数是什么,我们只是尽量去拟合它。前面 ...