一、机器学习概述: 1. 学习动机: 机器学习已经在不知不觉中渗透到人们生产和生活中的各个领域,如邮箱自动过滤的垃圾邮件、搜索引擎对链接的智能排序、产品广告的个性化推荐等; 机器学习横跨计算机科学、工程技术和统计学等多个学科,需要融合多学科的专业只是,也同样可以作为实际工具应用到 ...
. 梯度下降法 . 梯度下降法的算法思路 算法目的:找到 损失 函数的最小值以及相应的参数值。从而找到最小的损失函数。 梯度下降法:通过模拟小球滚动的方法来得到函数的最小值点。 小球会根据函数形状找到一个下降方向不停的滚动,它的高度一直是下降的。随着时间的推移,小球会滚到底,从而找到最小值点。 但是梯度下降法不能保证到达最小值点,也有可能到达 鞍点 这一点的梯度为 或者 极小值点。 . 梯度下降 ...
2020-09-26 21:40 2 1222 推荐指数:
一、机器学习概述: 1. 学习动机: 机器学习已经在不知不觉中渗透到人们生产和生活中的各个领域,如邮箱自动过滤的垃圾邮件、搜索引擎对链接的智能排序、产品广告的个性化推荐等; 机器学习横跨计算机科学、工程技术和统计学等多个学科,需要融合多学科的专业只是,也同样可以作为实际工具应用到 ...
先来回顾一下梯度下降法的参数更新公式: (其中,α是学习速率,是梯度) 这个公式是怎么来的呢?下面进行推导: 首先,如果一个函数 n 阶可导,那么我们可以用多项式仿造一个相似的函数,这就是泰勒展开式。其在a点处的表达式如下: 可以看出,随着式子的展开,这个展 ...
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来 ...
题目描述:自定义一个可微并且存在最小值的一元函数,用梯度下降法求其最小值。并绘制出学习率从0.1到0.9(步长0.1)时,达到最小值时所迭代的次数的关系曲线,根据该曲线给出简单的分析。 代码: # -*- coding: utf-8 -*- """ Created on Tue Jun ...
简介 梯度下降法是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以),在求解机器学习算法的模型参数,梯度下降是最常采用的方法之一,在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解 不是一个机器学习算法 是一种基于搜索的最优化方法 最小化损失函数 最大化 ...
1. 先修知识 设多元线性回归方程的模型为 \[Y=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_pX_p \] 可令\(X_0=1\),则模型可写做: \[Y=\beta_0X_0+\beta_1X_1+\beta_2X_2+ ...