八、(10分) 设 $A=(a_{ij})$ 为 $n\,(n>1)$ 阶实对称阵, 满足: 每行元素之和都等于零, 并且非主对角元素都小于等于零. 设指标集 $\Gamma=\{1,2,\c ...
八 分 设 n 阶复方阵 M 的全体特征值为 lambda , lambda , cdots, lambda n , 则 M 的谱半径 rho M 定义为 rho M max limits leq i leq n lambda i . 设 A,B 为 n 阶实方阵, 使得 begin pmatrix A amp B B amp A end pmatrix 为半正定实对称阵, 证明: rho B l ...
2020-09-26 13:25 0 1425 推荐指数:
八、(10分) 设 $A=(a_{ij})$ 为 $n\,(n>1)$ 阶实对称阵, 满足: 每行元素之和都等于零, 并且非主对角元素都小于等于零. 设指标集 $\Gamma=\{1,2,\c ...
七、(10分) 设数域 $\mathbb{K}$ 上的 $n\,(n\geq 2)$ 阶方阵 $A,B$ 满足 $AB=0$ 且 $\mathrm{tr}(A^*)=0$, 证明: $A^*B=0$ ...
八、(10分) 设 $M_n(\mathbb{C})$ 是 $n$ 阶复方阵全体构成的线性空间, $M_n(\mathbb{C})$ 上的线性变换 $\varphi$ 定义为 $\varphi(X) ...
八、(本题10分) 设 $A,B,C$ 均为 $n$ 阶半正定实对称阵, 使得 $ABC$ 是对称阵, 即满足 $ABC=CBA$. 证明: $ABC$ 也是半正定阵. 证明 我们先引用如下引理 ...
七、(10分) 设 $V$ 为 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, $V=U\oplus W$, 其中 $U,W$ 都是 $\varphi$-不变子空间. 证明: ...
六、(10分) 设 $n\,(n>1)$ 阶方阵 $A$ 满足: 每行元素之和都等于 $c$, 并且 $|A|=d\neq 0$. 试求 $A$ 的所有代数余子式之和 $\sum\limits_{i,j=1}^nA_{ij}$. 解法一 (矩阵性质) 设 $\alpha=(1,1 ...
八、(本题10分) 设 $m$ 阶复方阵 $A$ 的全体不同特征值为 $\lambda_1,\cdots,\lambda_k$, 对应的几何重数分别为 $t_1,\cdots,t_k$; $n$ 阶 ...
八、(本题10分) 设 $A,B$ 为 $n$ 阶正定实对称阵, 其算术平方根记为 $A^{\frac{1}{2}}$, $B^{\frac{1}{2}}$, 证明: 若 $A-B$ 为半正定阵, ...