最近在维护xgboost二分类算子,经过现场客户反馈的问题,模型在评估推理的时候,结果很不理想,实际测试确实模型预测全为1 一开始以为是数据不均匀导致的预测效果差,也尝试了分布均衡的数据以及网格搜索模型参数调参,结果还是同样的效果,问题没出现在这里 接着经过debug后,发现 模型 ...
作者 LAKSHAY ARORA 编译 VK 来源 Analytics Vidhya 概述 流数据是机器学习领域的一个新兴概念 学习如何使用机器学习模型 如logistic回归 使用PySpark对流数据进行预测 我们将介绍流数据和Spark流的基础知识,然后深入到实现部分 介绍 想象一下,每秒有超过 条微博被发送, 多张照片被上传到Instagram上,超过 个Skype电话被打,超过 个谷歌搜 ...
2020-09-17 23:35 0 727 推荐指数:
最近在维护xgboost二分类算子,经过现场客户反馈的问题,模型在评估推理的时候,结果很不理想,实际测试确实模型预测全为1 一开始以为是数据不均匀导致的预测效果差,也尝试了分布均衡的数据以及网格搜索模型参数调参,结果还是同样的效果,问题没出现在这里 接着经过debug后,发现 模型 ...
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型 ...
cross_val_score(model_name, x_samples, y_labels, cv=k) 作用:验证某个模型在某个训练集上的稳定性,输出k个预测精度。 K折交叉验证(k-fold) 把初始训练样本分成k份,其中(k-1)份被用作训练集,剩下一份被用作评估集,这样一共可以对 ...
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型。 前言,对两分 ...
分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO(Least Absolute ...
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高、对异常值不敏感、无数据输入假定 缺点:时间复杂度高、空间复杂度高 1、当样本不平衡时,比如一个类的样本容量很大 ...
准备环境 anaconda ipython PYTHONPATH 运行环境 数据 1. 获取原始数据 1682 u'1|24|M|technician|85711' u'1|Toy Story (1995 ...
实验是最能定义数据科学家日常生活的词。为了为给定的问题构建一个合适的机器学习模型,数据科学家需要训练多个模型。此过程包括诸如寻找模型的最佳超参数、使用 K 折交叉验证模型,有时甚至训练具有多个输出的模型等任务。前面提到的所有这些任务都很耗时,但对于模型开发的成功来说却极为重要。在这篇博文中 ...