L1和L2正则都是比较常见和常用的正则化项,都可以达到防止过拟合的效果。L1正则化的解具有稀疏性,可用于特征选择。L2正则化的解都比较小,抗扰动能力强。 L2正则化 对模型参数的L2正则项为 即权重向量中各个元素的平方和,通常取1/2。L2正则也经常被称作“权重衰减 ...
机器学习中,如果参数过多,模型过于复杂,容易造成过拟合 overfit 。即模型在训练样本数据上表现的很好,但在实际测试样本上表现的较差,不具备良好的泛化能力。为了避免过拟合,最常用的一种方法是使用使用正则化,例如 L 和 L 正则化。但是,正则化项是如何得来的 其背后的数学原理是什么 L 正则化和 L 正则化之间有何区别 本文将给出直观的解释。 . L 正则化直观解释 L 正则化公式非常简单,直 ...
2020-09-17 18:11 0 1022 推荐指数:
L1和L2正则都是比较常见和常用的正则化项,都可以达到防止过拟合的效果。L1正则化的解具有稀疏性,可用于特征选择。L2正则化的解都比较小,抗扰动能力强。 L2正则化 对模型参数的L2正则项为 即权重向量中各个元素的平方和,通常取1/2。L2正则也经常被称作“权重衰减 ...
过节福利,我们来深入理解下L1与L2正则化。 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称。也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作 ...
1. 为什么要使用正则化 我们先回顾一下房价预测的例子。以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合。如果想要解决右图中的过拟合问题,需要能够使得 $ x^3,x^4 $ 的参数 $ \theta_3,\theta_4 $ 尽量满足 ...
一、概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。 二、区别: 1.L1是模型各个参数的绝对值之和。 L2是模型各个参数的平方和的开方值。 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优 ...
一、范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数。 一般分为L0、L1、L2与L_infinity范数。 二、范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while ...
稀疏性表示数据中心0占比比较大 引西瓜书中P252原文: 对于损失函数后面加入惩罚函数可以降低过拟合的风险,惩罚函数使用L2范数,则称为岭回归,L2范数相当与给w加入先验,需要要求w满足某一分布,L2范数表示数据服从高斯分布,而L1范数表示数据服从拉普拉斯分布。从拉普拉斯函数和高斯 ...
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为平均绝对值误差(MAE)。总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 ...
...