背景与思路来源 目前 SR 模型中合成 LR 使用的模糊核问题 目前大多数 SR 的 model 都是用的合成下采样图片来进行训练的,而这些合成的图片常常使用的是 MATLAB 里面的 imresize 函数来进行实现的,这样的做法也就是会使得 SR-kernel 是固定和理想。当然还有很多是 ...
在现实情况下,SR模型通常会由于实际得blur kernel与预先假设的不一致而造成严重的performance drop。blind SR问题就是要尝试解决blur kernel未知情况下的SR问题。本文就针对blind SR提出,预测每张照片blur kernel的方法,再将blur kernel的信息结合到SR网络中。 文中提出的预测blur kernel的方法称为Iterative ke ...
2020-09-16 20:22 0 635 推荐指数:
背景与思路来源 目前 SR 模型中合成 LR 使用的模糊核问题 目前大多数 SR 的 model 都是用的合成下采样图片来进行训练的,而这些合成的图片常常使用的是 MATLAB 里面的 imresize 函数来进行实现的,这样的做法也就是会使得 SR-kernel 是固定和理想。当然还有很多是 ...
CVPR20的文章,感觉想法挺棒的。 超分问题可以定义为$y=(x\otimes k)\downarrow_s+n$.他通常有两大类解决方法,早期通常是使用model-based方法。 ...
本文是针对Zero-Shot(ZSSR)的缺点做出的一些改进。虽然ZSSR提出了利用内部信息,采用无监督的方式进行SR,但缺点在于其测试时间过长。本文提出的MZSR将元学习和ZSSR结合,同时利用 ...
项目地址:http://www.wisdom.weizmann.ac.il/~vision/zssr/ 之前利用深度学习构建的SR模型都是有监督学习,利用了大量的外部信息。但是由于这些LR-HR ...
1. 介绍 论文的出发点是要发掘patch上的自相关分布,通过生成器G生成LR downsample后的版本和LR自己相应的patch在分布上更相似(通过D网络判别学到),从而学习出LR的降质过 ...
超分辨率问题(Image super-resolution, SR) 从低分辨率(LR)的图像中 ...
目前的SR任务都是将真实图像进行下采样得到成对数据集进行训练,这样的训练会造成与真实情况存在domain gap。因此本文针对这个问题提出了用不成对的数据进行一种伪监督训练。感觉本质上就是通过Cy ...
CVPR21 有被后面的视觉效果惊艳到。 现在利用GAN的SR方法主要可以分为两类: 1. 利用adversarial loss。 这种情况下generator要同时捕捉自然图像的特点,又要保 ...