第六篇:字符分割 在知道了车牌字符的规律之后,可以根据车牌的特点对字符进行分割。一般最容易想到的方法就是根据车牌投影、像素统计特征对车牌图像进行字符分割的方法。是一种最常用的、最基本的、最简单的车牌字符分割方法。它的精髓是对车牌图像进行逐列扫描,统计车牌字符的每列像素点个数,并得到投影图 ...
车牌识别项目中,关于字符分割的实现: 思路: . 读取图片,使用 cv 。 . 将 BGR 图像转为灰度图,使用 cv .cvtColor img,cv .COLOR RGB GRAY 函数。 . 车牌原图尺寸 , ,使用阈值处理灰度图,将像素值大于 的像素点的像素设置为 ,不大于 的像素点的像素设置为 。 .观察车牌中字符,可以看到每个字符块中的 每列像素值的和 都不为 ,这里做了假设,将左右结 ...
2020-09-14 21:24 0 1892 推荐指数:
第六篇:字符分割 在知道了车牌字符的规律之后,可以根据车牌的特点对字符进行分割。一般最容易想到的方法就是根据车牌投影、像素统计特征对车牌图像进行字符分割的方法。是一种最常用的、最基本的、最简单的车牌字符分割方法。它的精髓是对车牌图像进行逐列扫描,统计车牌字符的每列像素点个数,并得到投影图 ...
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; int areas; //该函数用来验证是否是我们想要的区域,车牌定位原理其实就是在图片 ...
最近在复习OPENCV的知识,学习caffe的深度神经网络,正好想起以前做过的车牌识别项目,可以拿出来研究下 以前的环境是VS2013和OpenCV2.4.9,感觉OpenCV2.4.9是个经典版本啊!不过要使用caffe模型的话,还是要最新的OpenCV3.3更合 ...
本篇文章主要基于python语言和OpenCV库(cv2)进行车牌区域识别和字符分割,开篇之前针对在python中安装opencv的环境这里不做介绍,可以自行安装配置! 车牌号检测需要大致分为四个部分: 1.车辆图像获取 2.车牌定位、 3.车牌字符分割 4.车牌字符识别 具体介绍 ...
https://m.jb51.net/article/137487.htm 车牌识别总体分成两个大的步骤: 一、车牌定位:从照片中圈出车牌 二、车牌字符识别 这里只说第二个步骤,字符识别包括两个步骤: 1、图像处理 原本的图像每个像素点都是RGB定义的,或者称为有R/G/B三个通道 ...
最近做一个车牌识别项目,入门级别的,十分简单。 车牌识别总体分成两个大的步骤: 一、车牌定位:从照片中圈出车牌 二、车牌字符识别 这里只说第二个步骤,字符识别包括两个步骤: 1、图像处理:原本的图像每个像素点都是RGB定义的,或者称为有R/G/B三个通道。在这种情况下,很难区分谁是背景 ...
在对车牌识别过程中,常用的方法有:基于形状、基于色调、基于纹理、基于文字特征等方法。首先基于形状,在车牌中因为车牌为形状规格的矩形,所以目的转化为寻找矩形特征,常常是利用车牌长宽比例特征、占据图像的比例等。基于色调,国内的车牌往往是蓝底白字,可以采用图像的色调或者饱和度特征 ...
2012-11-07 17:42 1090人阅读 评论(0) 收藏 举报 目录(?)[-] 车牌预处理 字符分割 归一化处理 细化处理 字符特征提取 神经网络训练 车牌图像识别结果测试 ...