原文:主成分分析(PCA)直观的理解

模型降维 Dimensionality Reduction For Dummies 直觉 原文地址,不FQ也能看,只是加载的慢。 人类是视觉生物。为了相信我们需要去亲自目睹。当你有一个超过三维的数据集时,你就不可能用眼睛去看这堆数据到底表达了什么。但是那些额外的维度真的是必须的吗 是否有一个方法可以将它降到一维,二维或者人类的三维 确实有这种方法。 主成分分析 PCA 就是专门解决这个问题的。它简 ...

2020-09-12 18:24 0 558 推荐指数:

查看详情

成分分析(PCA)的一种直观理解

源自知乎的一个答案,网上很多关于PCA的文章,不过很多都只讲到了如何理解方差的投影,却很少有讲到为什么特征向量就是投影方向。本文从形象角度谈一谈,因为没有证明,所以不会严谨,但是应该能够帮助形象理解PCA背后的原理。 一、先从旋转和缩放角度,理解一下特征向量和特征值的几何意义 从定义来理解 ...

Wed Oct 05 18:59:00 CST 2016 0 24262
PCA(成分分析)的简单理解

PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间。比如三维空间的一个球,往坐标轴方向投影,变成了一个圆。球是3维的,圆是2维的。在球变成圆的这个投影过程中,丢失了原来物体(球)的一部分“性质 ...

Wed Apr 19 01:55:00 CST 2017 0 8831
PCA成分分析理解

一、理论概述 1)问题引出 先看如下几张图:   从上述图中可以看出,如果将3个图的数据点投影到x1轴上,图1的数据离散度最高,图3其次,图2最小。数据离散性越大,代表数据在所投影的维度上具 ...

Sat Feb 02 22:49:00 CST 2019 0 2277
PCA——成分分析

  PCA(Principal Components Analysis)成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽量减少精度的损失,线性无关的变量称为主成分。大致流程如下:   首先对给定数据集(数据是向量 ...

Tue May 26 07:22:00 CST 2020 1 537
成分分析PCA

基本概念 成分分析(Principal Component Analysis, PCA)是研究如何将多指标问题转化为较少的综合指标的一种重要的统计方法,它能将高维空间的问题转化到低维空间去处理,使问题变得比较简单、直观,而且这些较少的综合指标之间互不相关,又能提供原有指标的绝大部分 ...

Fri May 03 04:13:00 CST 2019 0 535
成分分析PCA

一.定义   成分分析(principal components analysis)是一种无监督的降维算法,一般在应用其他算法前使用,广泛应用于数据预处理中。其在保证损失少量信息的前提下,把多个指标转化为几个综合指标的多元统计方法。这样可达到简化数据结构,提高分信息效率的目的。   通常 ...

Tue Feb 12 21:48:00 CST 2019 0 588
成分分析-PCA

成分分析-PCA 1. 数据的降维 高维数据 除了图片、文本数据,我们在实际工作中也会面临更多高维的数据。比如在评分卡模型构建过程中,我们通常会试着衍生出很多的特征,最后就得到上千维、甚至上万维特征; 在广告点击率预测应用中,拥有几个 亿特征也是常见的事情; 在脑科学 ...

Sat Oct 30 23:57:00 CST 2021 0 60
PCA成分分析

  PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA分析过程,而没有讲述其中的原理。这篇 ...

Sat Mar 02 03:57:00 CST 2019 0 1002
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM