目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化 ...
目录 .调整模型参数来提高性能 . 创建简单的调整模型 . 定制调整参数 .使用元学习来提高性能 . 集成学习 元学习 概述 . bagging . boosting . 随机森林 训练随机森林 评估随机森林性能 .调整模型参数来提高性能 参数调整:调节模型合适的选项的过程,如股票C . 决策树模型中的trials参数,神经网络中的调节节点 隐层数目,SVM中的核函数等等。 caret包自动调整 ...
2020-09-11 21:23 0 1004 推荐指数:
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化 ...
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树 ...
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合。 目录 第一章 机器学习简介 第二章 数据 ...
目录 1.基本概念 2.选择机器学习算法 3.使用R进行机器学习 1.基本概念 机器学习:发明算法将数据转化为智能行为 数据挖掘 VS 机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备 过程:数据——> ...
基本概念 利用线性的方法,模拟因变量与一个或多个自变量之间的关系。自变量是模型输入值,因变量是模型基于自变量的输出值。 因变量是自变量线性叠加和的结果。 线性回归模型背后的逻辑——最小二乘法计算线性系数 最小二乘法怎么理解? 它的主要思想就是求解未知参数,使得理论值与观测值之差 ...
from:http://www.zhizhihu.com/html/y2009/410.html 机器学习是计算机科学和统计学的边缘交叉领域,R关于机器学习的包主要包括以下几个方面: 1)神经网络(Neural Networks): nnet包执行单隐层前馈神经网络,nnet是VR包的一部分 ...
#---------------------------------------- # 功能描述:演示NB建模过程 # 数据集:SMS文本信息 # tm包:维也纳财经大学提供 #-------- ...
目录 1.分类规则原理 1.1 1R单规则算法 1.2 RIPPER算法 2. 规则学习应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估性能 5)提高性能 6)选择 ...