目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 ...
目录 .评估分类方法的性能 . 混淆矩阵 . 其他评价指标 Kappa统计量 灵敏度与特异性 精确度与回溯精确度 F度量 . 性能权衡可视化 ROC曲线 .评估未来的性能 . 保持法 . 交叉验证 . 自助法抽样 .评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的。 种数据类型评价分类器:真实的分类值 预测的分类值 预测的估计概率。之前的分类算法案例只用了前 ...
2020-09-11 16:27 0 1807 推荐指数:
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 ...
二、机器学习模型评估 2.1 模型评估:基本概念 错误率(Error Rate) 预测错误的样本数a占样本总数的比例m \[E=\frac{a}{m} \] 准确率(Accuracy) 准确率=1-错误率准确率=1−错误率 误差 ...
'没有测量,就没有科学'这是科学家门捷列夫的名言。在计算机科学特别是机器学习领域中,对模型的评估同样至关重要,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要分为离线评估和在线评估两个阶段。针对分类、排序、回归、序列预测等不同类 ...
本文对机器学习模型评估指标进行了完整总结。机器学习的数据集一般被划分为训练集和测试集,训练集用于训练模型,测试集则用于评估模型。针对不同的机器学习问题(分类、排序、回归、序列预测等),评估指标决定了我们如何衡量模型的好坏 一、Accuracy 准确率是最简单的评价指标,公式 ...
涉及: 使用交叉验证对模型进行评估 使用网格搜索寻找模型的最优参数 对分类模型的可信度进行评估 使用交叉验证进行模型评估 以前的内容,经常涉及使用sklear中的train_test_split 将数据集拆分成训练集和测试集,然后用训练集训练模型,再用模型去拟合测试集 ...
模型评价是指对于已经建立的一个或多个模型,根据其模型的类别,使用不同的指标评价其性能优劣的过程。常用的聚类模型评价指标有ARI评价法(兰德系数)、AMI评价法(互信息)、V-measure评分、FMI评价法和轮廓系数等。常用的分类模型评价指标有准确率(Accuracy)、精确率 ...
评估指标的局限性 准确率(Accuracy) \(\text{Accuracy} = \dfrac{n_{correct}}{n_{total}}\) 样本不均衡时,不准确 改进:平均准确率 精确率(Precision)和召回率 ...
常用机器学习算法包括分类、回归、聚类等几大类型,以下针对不同模型总结其评估指标 一、分类模型 常见的分类模型包括:逻辑回归、决策树、朴素贝叶斯、SVM、神经网络等,模型评估指标包括以下几种: (1)二分类问题 (a)混淆矩阵 准确率A:预测正确个数占总数的比例 ...