矩阵p范数 设矩阵 \(A=(a_{ij})_{m\times n}\),则有下列矩阵范数: \[\lVert A\rVert_{m1}=\sum\limits_{i,j}|a_{ij} \] \[\lVert A\rVert_{m2}=(\sum\limits_{i,j ...
范数定义 设 V 是数域 F 上线性空间, nu 是定义在 V 上的实值函数。如果 nu 满足: 对任意 theta ne alpha in V, nu alpha gt 对任意 alpha in V, k in F, nu k alpha k nu alpha 对任意 alpha, beta in V, nu alpha beta le nu alpha nu beta 则称 nu 是 V 上的 ...
2020-09-07 10:48 0 1469 推荐指数:
矩阵p范数 设矩阵 \(A=(a_{ij})_{m\times n}\),则有下列矩阵范数: \[\lVert A\rVert_{m1}=\sum\limits_{i,j}|a_{ij} \] \[\lVert A\rVert_{m2}=(\sum\limits_{i,j ...
title: 向量范数和矩阵范数 date: 2018-05-28 16:49:50 tags: [经常忘,数学] categories: 概念 mathjax: true 范数 范数分为向量范数和矩阵范数,概念经常忘记,这里总结一下。 向量范数 对于向量\(x=[x_1,x_2 ...
的加锁顺序是自顶向下,释放锁的顺序是自下而上。 上级节点加的意向锁不影响当前节点和其子节点上锁的相容性 ...
将学习到什么 矩阵范数相关. 基础 函数 \(\lVert \cdot \rVert\):\(M_n \rightarrow \mathbb{R}\) 称为一个矩阵范数,如果对所有 \(A,B \in M_n\),它满足如下五条公理: (1) \(\lVert ...
--------------------------2020.8.30更新---------------------------- 把之前的没写的几个矩阵范数给补充下,暂时只找到这 6 个(主要是没看太多的文章,那天遇到新的再补充) m1 范数:\({{\left\| A \right ...
向量2范数是对应元素平方和:矩阵2范数是:其中是矩阵的最大特征值. 除此之外,矩阵有一个F范数(Frobenius范数)倒是跟向量的2范数比较相似,是矩阵内所有元素平方和: 矩阵的2范数是向量二范数对应的诱导范数。给定某一种向量范数 ,它所对应的矩阵范数定义为: 左边的范数是矩阵 ...
向量和矩阵的各种范数比较(1范数、2范数、无穷范数等等 范数 norm 矩阵 向量 一、向量的范数 首先定义一个向量为:a=[-5,6,8, -10 ...
目录 向量范数(vector norm) 向量的 1-范数 向量的 2-范数 向量的负无穷范数 向量的正无穷范数 矩阵范数(matrix norm) 矩阵的 1-范数 矩阵的 2-范数 矩阵 ...