使用数据: 结果(测试集&预测集): 内部决策树结构: 总结:可知该随机森林共有10棵树组成,预测结果为10棵树的投票为准。每棵树的最大层次为4,这是为了避免层次过高带来的计算压力和过拟合! ...
作者 Aaron Richter 编译 VK 来源 Towards Data Science 随机森林是一种机器学习算法,以其鲁棒性 准确性和可扩展性而受到许多数据科学家的信赖。 该算法通过bootstrap聚合训练出多棵决策树,然后通过集成对输出进行预测。由于其集成特征的特点,随机森林是一种可以在分布式计算环境中实现的算法。树可以在集群中跨进程和机器并行训练,结果比使用单个进程的训练时间快得多。 ...
2020-09-01 09:57 0 571 推荐指数:
使用数据: 结果(测试集&预测集): 内部决策树结构: 总结:可知该随机森林共有10棵树组成,预测结果为10棵树的投票为准。每棵树的最大层次为4,这是为了避免层次过高带来的计算压力和过拟合! ...
随机森林是决策树的集合。 随机森林结合许多决策树,以减少过度拟合的风险。 spark.ml实现支持随机森林,使用连续和分类特征,做二分类和多分类以及回归。 导入包 import org.apache.spark.sql.SparkSession import ...
:是指森林中每一棵决策树最大可能depth,在决策树中提到了这个参数。更深的一棵树意味模型预测更有力,但同 ...
前言 最近阅读了spark mllib(版本:spark 1.3)中Random Forest的实现,发现在分布式的数据结构上实现迭代算法时,有些地方与单机环境不一样。单机上一些直观的操作(递归),在分布式数据上,必须进行优化,否则I/O(网络,磁盘)会消耗大量时间。本文整理spark随机森林 ...
随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数据,列方向上采用无放回随机抽样得到特征子集,并据此得到其最优切分点,这便是随机森林算法的基本原理 ...
1、概述 基础算法 训练 参数 2、code ...
此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上。事实上,有很多开源的算法包供我们使用。无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错的选择。 Spark是目前比较流行的分布式计算解决方案,同时支持集群模式和本地单机模式 ...
概述 鉴于决策树容易过拟合的缺点,随机森林采用多个决策树的投票机制来改善决策树,我们假设随机森林使用了m棵决策树,那么就需要产生m个一定数量的样本集来训练每一棵树,如果用全样本去训练m棵决策树显然是不可取的,全样本训练忽视了局部样本的规律,对于模型的泛化能力是有害的 产生n个样本的方法采用 ...