自动编码器是一种特殊的神经网络,经过训练可以将其输入复制到其输出。例如,给定手写数字的图像,自动编码器首先将图像编码为较低维的潜在表示,然后将潜在表示解码回图像。自动编码器学会在最小化重构误差的同时压缩数据。 要了解有关自动编码器的更多信息,请考虑阅读Ian Goodfellow,Yoshua ...
数据集:Kaggle中使用信用卡欺诈数据:该数据集包含有在 年 月欧洲持卡人的信用卡交易信息。 这个数据集显示了两天内发生的交易,其中在 , 次交易中有 次为欺诈数据。这样的数据集是相当不平衡的,其中正类 欺诈 数据占所有交易数据的 . 。 数据挖掘 这虽然是一个非常不平衡的数据集,但是它也是一个很好的例子:对异常或欺诈进行识别验证。 首先,我们需要通过主成分分析法将数据集维度由 维下降到 维,并 ...
2020-08-30 15:47 0 629 推荐指数:
自动编码器是一种特殊的神经网络,经过训练可以将其输入复制到其输出。例如,给定手写数字的图像,自动编码器首先将图像编码为较低维的潜在表示,然后将潜在表示解码回图像。自动编码器学会在最小化重构误差的同时压缩数据。 要了解有关自动编码器的更多信息,请考虑阅读Ian Goodfellow,Yoshua ...
降噪自动编码器是一种用于图像去噪无监督的反馈神经网络 原理如下图所示 训练代码如下 测试代码如下 打赏 如果对您有帮助,就打赏一下吧O(∩_∩)O ...
堆叠式自动编码器 自动编码器可以具有多个隐藏层。在这种情况下,它们被称为堆叠式自动编码器(或深度自动编码器)。添加更多的层有助于自动编码器学习更多的复杂的编码。就是说,要注意不要使自动编码器过于强大。想象一个强大的编码器,它只是学会了把每个输入映射到单个任意数字(而解码器则学习反向映射)。显然 ...
深度自动编码器由两个对称的深度置信网络组成,其中一个深度置信网络通常有四到五个浅层,构成负责编码的部分,另一个四到五层的网络则是解码部分。 这些层都是受限玻尔兹曼机(RBM)(注:也可以采用自编码器预训练?),即构成深度置信网络的基本单元,它们有一些特殊之处,我们将在下文中介绍。以下是简化的深度 ...
AE(Auto Encoder, 自动编码器) AE的结构 如上图所示,自动编码器主要由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器和解码器可以看作是两个函数,一个用于将高维输入(如图片)映射为低维编码(code),另一个用于将低维编码(code)映射为高维 ...
到目前为止,已经叙述了神经网络的监督学习,即学习的样本都是有标签的。现在假设我们有一个没有标签的训练集,其中. 自动编码器就是一个运用了反向传播进行无监督学习的神经网络,学习的目的就是为了让输出值和输入值相等,即.下面就是一个自动编码器: 自动编码器试图学习一个函数. 换句话说,它试图逼近 ...
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked AutoEncoder(堆栈自动编码器) 1. 前言 深度学习的威力在于其能够逐层地学 ...
的数学理论确实无懈可击,但是却只对线性数据效果比较好。 于是,寻求简单的、自动的、智能的特征提取方法仍然 ...