MaskRCNN网络结构 MaskRCNN作为FasterRCNN的扩展,产生RoI的RPN网络和FasterRCNN网络。 结构:ResNet101+FPN 代码:TensorFlow+ Keras(Python) 代码中将Resnet101网络,分成5个stage,记为[C1 ...
网络结构 两层结构 所有程序都在客户端,服务器只是个数据库 三层结构 展现层 逻辑层 数据层 协议 第三层:网络层 路由器寻址和最短路径:IP协议 第四层:传输层 TCP 特点 面向连接的可靠的数据传输安全可靠的传输层协议 一般请求必有响应 重发机制 重连机制 效率不是其首要考虑,传输速度较慢 三次握手 四次挥手 长连接 若要保持长连接需要发心跳请求 集群服务器环境的优势 负载均衡 故障转移 数据 ...
2020-08-27 22:49 0 632 推荐指数:
MaskRCNN网络结构 MaskRCNN作为FasterRCNN的扩展,产生RoI的RPN网络和FasterRCNN网络。 结构:ResNet101+FPN 代码:TensorFlow+ Keras(Python) 代码中将Resnet101网络,分成5个stage,记为[C1 ...
MSRA(微软亚洲研究院)何凯明团队的深度残差网络(Deep Residual Network)在2015年的ImageNet上取得冠军,该网络简称为ResNet(由算法Residual命名),层数达到了152层,top-5错误率降到了3.57,而2014年冠军GoogLeNet的错误率是6.7 ...
随着深度学习的普及开来,设计一个网络结构变得越来越“简单”,如果一个新的网络只是简单的卷积、池化、全连接,改改其中的参数,那就大错特错了。所以网络在应用中,往往要面临的问题是:如何设计一个好的网络结构。 目前常见的网络结构:AlexNet、ZF、GoogLeNet、VGG、ResNet等等都可 ...
[NL系列] RNN & LSTM 网络结构及应用 http://www.jianshu.com/p/f3bde26febed/ 这篇是 The Unreasonable Effectiveness of Recurrent ...
这篇论文的时候,觉得自己如果无法完全清晰地知晓网络结构,就始终有一种浮于表面的感觉,相当于只是学习了一 ...
refinedet只预测4个层,并且只有conv6_1、conv6_2,没有ssd中的conv7、8、9 refinedet的4个层都只有1个aspect ratio和1个min_size,所 ...
ResNet结构 它使用了一种连接方式叫做“shortcut connection”,顾名思义,shortcut就是“抄近道”的意思,看下图我们就能大致理解: 图1 Shortcut Connection 这是文章里面的图,我们可以看到一个“弯弯的弧线“这个就是所谓 ...
这里,S是卷积核移动的步长stride;P是进行卷积操作时的参数,图像尺寸是否保持原图大小;k是卷积核的大小; ...