定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation)。 Domain adaptation有哪些实现手段呢? 几乎所有的手段都尝试去学习一个特征转换,使得在转换过后的特征空间上,source ...
开放集域适应 Open Set Domain Adaptation 阅读论文:Open Set Domain Adaptation http: openaccess.thecvf.com content ICCV papers Busto Open Set Domain ICCV paper.pdf Closed Set:目标域和源域包含了同一组对象类的图像 例如:source有 类,target ...
2020-08-26 15:12 0 786 推荐指数:
定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation)。 Domain adaptation有哪些实现手段呢? 几乎所有的手段都尝试去学习一个特征转换,使得在转换过后的特征空间上,source ...
Separate to Adapt: Open Set Domain Adaptation via Progressive Separation论文笔记 Abstract Domain adaptation问题在利用源域的标注数据为未标记的目标域学习准确的分类器方面已经有较大成功,但是Open ...
领域适应学习(domain adaptation) 问题来源:在经典的机器学习中,我们往往假设训练集和测试集分布一致,但是在实际的问题中,测试环境往往与训练的数据有较大的差异,出现过拟合问题:在训练集上训练结构较好,但是在测试集上的效果不好,因此出现了迁移学习技术。 分布不一致的理解 ...
Domain Adaptable 在经典的机器学习模型中,我们习惯性假设训练数据集和目标训练集有着相同的概率分布。而在现实生活中,这种约束性假设很难实现。当训练数据集和测试集有着巨大差异时,很容易出现过拟合的现象,使得训练的模型在测试集上表现不理想。 举个简单 ...
无监督领域自适应(Unsupervised domain adaptation, UDA) 任务描述 现有两个数据集, \[\mathcal{D}_s=\{(x^s_i,y^s_i)\}_{i=1}^{m} \] \[\mathcal{D}_t=\{x^t_j\}_{j ...
文章内容主要整理自Sinno Jialin Pan and Qiang Yang的论文《A survey on transfer Learning》。 1 迁移学习提出的背景及历史 1.1、 ...
在前面一节领域自适应(Domain Adaptation)之领域不变特征适配(一)中,我们利用MMD公式来对齐两个边缘分布\(P(Z)\)和\(Q(Z)\),学习领域不变特征。本章节通过另一种方法来学习领域不变特征————对抗训练。 一个例子 假设现在有两堆数据,一堆是真实的样本 ...
领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据)。领域自适应如今是迁移学习的一个火热分支。 CVPR2018 Residual ...