参考:官方文档 源码 官方文档 nn.Sequential A sequential container. Modules will be added to it in the order they are passed in the constructor. ...
一 第一种方式 可以配合一些条件判断语句动态添加 模板 torch.nn.Sequential 的一个对象.add module name, module 。 name:某层次的名字 module:需要添加的子模块,如卷积 激活函数等等。 添加子模块到当前模块中。 可以通过 name 属性来访问添加的子模块。 输出后每一层的名字:不是采用默认的命名方式 按序号 , , , ,而是按照name属性 ...
2020-08-25 10:40 0 656 推荐指数:
参考:官方文档 源码 官方文档 nn.Sequential A sequential container. Modules will be added to it in the order they are passed in the constructor. ...
PyTorch有多种方法搭建神经网络,下面识别手写数字为例,介绍4种搭建神经网络的方法。 方法一:torch.nn.Sequential() torch.nn.Sequential类是torch.nn中的一种序列容器,参数会按照我们定义好的序列自动传递下去。 import ...
实验目的 学会使用SPSS的简单操作,掌握神经网络模型。 实验要求 使用SPSS。 实验内容 (1)创建多层感知器网络,使用多层感知器评估信用风险,银行信贷员需要能够找到预示有可能拖欠贷款的人的特征来识别信用风险的高低。 (2)实现神经网络预测模型,使用径向基函数 ...
神经网络模型拆分 Distributed Machine Learning Federated Learning 针对神经网络的模型并行方法有:横向按层划分、纵向跨层划分和模型随机划分 横向按层 ...
深度学习最近火的不行,因为在某些领域应用的效果确实很好,深度学习本质上就是机器学习的一个topic,是深度人工神经网络的另一种叫法,因此理解深度学习首先要理解人工神经网络。 1、人工神经网络 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。下面是一张生物神经元的图示 ...
神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch。然后这一个batch会通过前 ...
自己搭建神经网络时,一般都采用已有的网络模型,在其基础上进行修改。从2012年的AlexNet出现,如今已经出现许多优秀的网络模型,如下图所示。 主要有三个发展方向: Deeper:网络层数更深,代表网络VggNet Module: 采用模块化的网络结构(Inception ...
代码 KBGAT 模型 图注意力网络(GAT) ...