在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。 原始输入为5*5大小,使用一个5*5大小的核,处理它,得到的结果为1*1大小, 卷积核参数为25。 原始输入是5*5大小,使用两次3*3大小的核,处理它,得到 ...
.什么是感受野 卷积神经网络 各输出层每个像素点在原始图像上的映射区域大小 下图是感受野示意图 如果对这个 x 的原始输入图片,用黄色的 x 卷积核作用,会输出一个 x 的输出特征图,这个输出特征图上的每个像素点映射到原始的图片是 x 的区域,所以它 输出特征图 的感受野是 ,如果再对这个 x 的特征图,用这个绿色的 x 卷积核作用,会输出一个 x 的输出特征图,这个输出特征图上的像素点映射到原 ...
2020-08-25 07:14 0 536 推荐指数:
在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。 原始输入为5*5大小,使用一个5*5大小的核,处理它,得到的结果为1*1大小, 卷积核参数为25。 原始输入是5*5大小,使用两次3*3大小的核,处理它,得到 ...
每个卷积核具有长、宽、深三个维度。 卷积核的长、宽都是人为指定的,长X宽也被称为卷积核的尺寸,常用的尺寸为3X3,5X5等;卷积核的深度与当前图像的深度(feather map的张数)相同,所以指定卷积核时,只需指定其长和宽两个参数。 例如,在原始图像层 (输入层),如果图像是灰度图像 ...
目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature ...
目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络 ...
第一次接触的时候,已经理解了,但是过了一段时间,就有点忘了下面这两篇文章,不错!可以帮助回忆与理解。 https://blog.csdn.net/zyqdragon/article/details/72353420 https://blog.csdn.net/xys430381_1 ...
解析: 一般而言,深度卷积网络是一层又一层的。 层的本质是特征图, 存贮输入数据或其中间表示值。一组卷积核则是联系前后两层的网络参数表达体, 训练的目标就是每个卷积核的权重参数组。描述网络模型中某层的厚度,通常用名词通道channel数或者特征图feature map数。 不过人们更习惯 ...
以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...
权值共享基本上有两种方法: 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列) 第二种只在同一特征图上 ...