在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔 ...
在实际应用中,我们常常需要自制数据集,解决本领域应用,而数据通常是图片或文字,需要做格式转换,才能在训练时使用。 代码: ...
2020-08-20 16:01 0 925 推荐指数:
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔 ...
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%。在换用多层神经网络后,正确率已有很大的提升。这次将采用卷积神经网络继续进行测试。 1、模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层)。其中卷积层 ...
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先 ...
网络结构: 代码如下: 测试的误差和准确率: Final test loss and accuracy : [1.3201157276447002, 0.80188304] 下一次更新:LSTM情感分类问题 ...
原理就不多讲了,直接上代码,有详细注释。 结果 ...
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 结果如下 接下来是含一个隐层的神经网络,输入层是784个神经元,两个隐层都是100个神经元,输出层是10个神经元,迭代500次,最后准确率在88%左右,汗。。。。准确率反而降 ...
浙江财经大学专业实践深度学习tensorflow——阳诚砖 1.案例描述 使用卷积神经网络对CIFAR-10数据集进行分类 2.CIFAR-10数据集 2.1 下载CIFAR-10数据集 2.2 导入CIFAR-10数据集 2.3 显示数据集信息 2.4 查看单项 ...
1、MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签;共有10000 ...