1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 RNN( Recurrent Neural Network 循环(递归)神经网络) 跟人的大脑记忆差不多。我们的任何决定,想法都是根据我们之前已经学到的东西产生的。RNN ...
假如我们接到了一个项目: 要让计算机能够认知图片中的动物是不是猫。 该怎么做 如果看不懂就去补概率论 数理统计 离散数学 线性代数啊啊啊啊 graph TD 问题本质:二分分类问题 gt 解决方法:线性回归和逻辑回归 解决方法:线性回归和逻辑回归 gt 评价误差:损失函数和成本函数 评价误差:损失函数和成本函数 gt 如何优化:梯度下降法 显然我们不能直接拿着一张图问计算机,这个是不是猫。但是无数 ...
2020-08-15 12:53 0 539 推荐指数:
1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 RNN( Recurrent Neural Network 循环(递归)神经网络) 跟人的大脑记忆差不多。我们的任何决定,想法都是根据我们之前已经学到的东西产生的。RNN ...
深度学习最近火的不行,因为在某些领域应用的效果确实很好,深度学习本质上就是机器学习的一个topic,是深度人工神经网络的另一种叫法,因此理解深度学习首先要理解人工神经网络。 1、人工神经网络 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。下面是一张生物神经元的图示 ...
推导反向传播 编程实现前向传播、反向传播 卷积神经网络的反向传播 快速矩阵、向量求导 ...
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成 ...
1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 循环神经网络(recurrent neural network)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络。 传统的机器学习算法 ...
人工神经网络是一个数学模型,旨在模拟人脑的神经系统对复杂信息的处理机制,其网络结构是对人脑神经元网络的抽象,两者有很多相似之处。 当然 ANN 还远没有达到模拟人脑的地步,但其效果也让人眼前一亮。 1. 人工神经元结构 人工神经元是一个多输入单输出的信息处理单元,是对生物神经 ...
卷积神经网络(Convolutional Neural Network,CNN)最初是为解决图像识别等问题设计的,在早期的图像识别研究中,最大的挑战是如何组织特征,因为图像数据不像其他类型的数据那样可以通过人工理解来提取特征。卷积神经网络相比传统的机器学习算法,无须手工提取特征,也不需要使用诸如 ...
BP 神经网络中的 BP 为 Back Propagation 的简写,最早它是由Rumelhart、McCelland等科学家于 1986 年提出来的,Rumelhart 并在Nature 上发表了一篇非常著名的文章 《Learning representations ...