一、卷积神经网络(CNN) 1、常见的CNN结构有:LeNet-5、AlexNet、ZFNet、VGGNet、ResNet等。目前效率最高的是ResNet。 2、主要的层次: 数据输入层:Input Layer 卷积计算层:CONV Layer ReLU激励层:ReLU ...
什么是神经网络 Neural Network 深度学习指的是训练神经网络 从一个房价预测的例子开始: 如果我们已知一些房屋的价格和面积,我们可以通过线性回归的方法,拟合一条直线,从而找到一个函数,使得我们可以通过房屋的面积来预测房屋价格。但是根据实际,房屋的价格是不能为负数的,因此单纯的直线并不合适,最终的函数 function 是这样的: 这就是一个简单的神经网络 Neural Network ...
2020-08-15 12:37 0 566 推荐指数:
一、卷积神经网络(CNN) 1、常见的CNN结构有:LeNet-5、AlexNet、ZFNet、VGGNet、ResNet等。目前效率最高的是ResNet。 2、主要的层次: 数据输入层:Input Layer 卷积计算层:CONV Layer ReLU激励层:ReLU ...
卷积神经网络 卷积神经网络(CNN)是深度学习的代表算法之一 。具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络”。随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于 计算机视觉、 自然语言处理等领域 ...
定义添加神经层的函数 1.训练的数据2.定义节点准备接收数据3.定义神经层:隐藏层和预测层4.定义 loss 表达式5.选择 optimizer 使 loss 达到最小 然后对所有变量进行初始化,通过 sess.run optimizer,迭代 1000 次进行学习 ...
本章内容主要描述了在机器学习中的前向传播,反向求导的原理与计算,常见的激活函数和损失函数,以及在网络训练过程中过拟合,梯度消失/爆炸等产生的原理以及解决方案。本人也在学习过程中,如果有错误之处,请各位多多指教。 1.1 神经网络的前向传播 我们首先定义如下图所示的神经网络,为了简单起见,所有 ...
1、什么是神经网络? (1)房价预测模型Ⅰ: 神经网络:size x ——> O ——> price y ReLU函数(Rectified linear unit 修正线性单元):修改线性的函数,避免出现price未负数的情况. (2)房价预测模型 ...
国内镜像:苏轶然-CSDN 论文地址:https://arxiv.org/pdf/1703.09039.pdf 原文地址:机器之心-深度神经网络全面概述:从基本概念到实际模型和硬件基础 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络 ...
博客:blog.shinelee.me | 博客园 | CSDN 卷积运算与相关运算 在计算机视觉领域,卷积核、滤波器通常为较小尺寸的矩阵,比如\(3\times3\)、\(5\times5\)等 ...
1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层 ...