目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1、认识PCA (1)简介 (2)方法步骤 2、提取主成分 3、主成分方差可视化 4、特征变换 5、数据分类结果 6、完整代码 总结: 1、认识PCA (1)简介 ...
目录 线性判别分析 LDA 数据降维及案例实战 一 LDA是什么 二 计算散布矩阵 三 线性判别式及特征选择 四 样本数据降维投影 五 完整代码 结语 一 LDA是什么 LDA概念及与PCA区别 LDA线性判别分析 Linear Discriminant Analysis 也是一种特征提取 数据压缩技术。在模型训练时候进行LDA数据处理可以提高计算效率以及避免过拟合。它是一种有监督学习算法。 与P ...
2020-08-14 22:43 0 1594 推荐指数:
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1、认识PCA (1)简介 (2)方法步骤 2、提取主成分 3、主成分方差可视化 4、特征变换 5、数据分类结果 6、完整代码 总结: 1、认识PCA (1)简介 ...
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用 ...
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用 ...
、甚至可以用皮尔森相关系数等。朴素贝叶斯分类用的就是Bayes判别法。本文要讲的线性判别分析就是用是F ...
原理 求解最佳投影方向,使得同类投影点尽可能的进,异类投影点尽可能的远 同类投影点距离用同类样本协方差矩阵表示 \[\omega^T \Sigma_i \omega \quad {第i类样本协方差} \] 异类投影点距离 \[||\omega^T\mu_0 - \omega ...
源代码: ...
LDA, Linear Discriminant Analysis,线性判别分析。注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别。 1、引入 上文介绍的PCA方法对提取样本数据的主要变化信息非常有效,而忽略了次要变化的信息。在有些情况下,次要信息 ...
线性判别分析 线性判别分析(linear discriminant analysis,LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。所得的组合可用来作为一个线性分类器,或者,更常见 ...