pytorch创建自己的数据集(分类任务) ...
. 迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改预训练好的resnet 网络在私人数据集上进行训练来分类蚂蚁和蜜蜂 . 数据集下载 这里使用的数据集包含ants和bees训练图片各约 张,验证图片各 张。由于数据样本非常少,如果从 初始化一个 ...
2020-08-13 13:46 0 490 推荐指数:
pytorch创建自己的数据集(分类任务) ...
预备知识 自己搭建cnn模型训练mnist(不使用迁移学习) https://blog.csdn.net/qq_42951560/article/details/109565625 pytorch官方的迁移学习教程(蚂蚁、蜜蜂分类) https ...
Domain Adaptable 在经典的机器学习模型中,我们习惯性假设训练数据集和目标训练集有着相同的概率分布。而在现实生活中,这种约束性假设很难实现。当训练数据集和测试集有着巨大差异时,很容易出现过拟合的现象,使得训练的模型在测试集上表现不理想。 举个简单 ...
Keras-RetinaNet 在自标数据集 alidq 上训练 detection model RetinaNet 模型部署与环境配置 参考README 数据预处理 数据统计信息: 类别:gun1, gun2 有效数据量:23216 测试集大小:1000 ...
笔记摘抄 提前安装torchtext和scapy,运行下面语句(压缩包地址链接:https://pan.baidu.com/s/1_syic9B-SXKQvkvHlEf78w 提取码:ahh3): ...
基于CNN的CIFAR10图像分类 完整代码如下: cifar10教程补充内容 更优选的网络,类似VGG 这个网络比前面那个准确率更高一些. 显示图片及标签 显示一些训练集中的照片: 显示预测结果和实际结果: ...
最近在学习Pytorch v1.3最新版和Tensorflow2.0。 我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorch不太一样,比如1.3中,Variable类已经被弃用了(目前还可以用,但不推荐),tensor ...
pytorch实现对Fashion-MNIST数据集进行图像分类 导入所需模块: 对数据集的操作(读取数据集): 由于像素值为0到255的整数,所以刚好是uint8所能表示的范围,包括transforms.ToTensor()在内的一些关于图片的函数就默认输入的是uint8型,若不是 ...