之前学习Java的时候,用过一个IDE叫做EditPlus,虽然他敲代码的高亮等体验度不及eclipse,但是打开软件特别快捷,现在也用他读python特别方便。 训练算法::使用梯度上升找到最佳参数 之前看过吴恩达的视频的同学们,听得比较多的就是梯度下降算法,但是梯度上升算法 ...
本篇用到的数据,链接:https: pan.baidu.com s DVr Ke jfz dQzXwz BjGg 提取码:v fo ...
2020-08-11 15:44 0 590 推荐指数:
之前学习Java的时候,用过一个IDE叫做EditPlus,虽然他敲代码的高亮等体验度不及eclipse,但是打开软件特别快捷,现在也用他读python特别方便。 训练算法::使用梯度上升找到最佳参数 之前看过吴恩达的视频的同学们,听得比较多的就是梯度下降算法,但是梯度上升算法 ...
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值 ...
逻辑回归(Logistic Regression,LR)在推荐系统发展历史中占非常重要的地位。其优势主要体现在三个方面: 数学含义的支撑:LR是一个广义线性模型(可以简单理解为加了激活函数的线性模型),其假设为因变量服从伯努利分布,而CTR事件可以类比为掷偏心硬币的问题,所以使用LR ...
转自别处 有很多与此类似的文章 也不知道谁是原创 因原文由少于错误 所以下文对此有修改并且做了适当的重点标记(横线见的内容没大明白 并且有些复杂,后面的运行流程依据前面的得出的算子进行分类) 初步接触 谓LR分类器(Logistic Regression Classifier ...
分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就是根据肿瘤的大小来判定是良性还是恶性。这就是一个很典型的二分类问题,即输出的结果只有两个值 ...
逻辑回归从线性回归引申而来,对回归的结果进行 logistic 函数运算,将范围限制在[0,1]区间,并更改损失函数为二值交叉熵损失,使其可用于2分类问题(通过得到的概率值与阈值比较进行分类)。逻辑回归要求输入的标签数据是01分布(伯努利分布),而线性回归则是对任意连续值的回归。出世 ...
逻辑回归(Logistic Regression) 原文链接:https://zhuanlan.zhihu.com/p/28408516 逻辑回归的定义 简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计 ...
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题。 二分类问题 二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题 ...