syms f x1 x2 f=(1/2)*x1^2+x2^2; x=[2;1]; a=[1 0;0 2];% A g1=diff(f,x1); g2=diff(f,x2); g=[g1;g2] ...
特点:具有超线性收敛速度,只需要计算梯度,避免计算二阶导数 算法步骤 step : 给定初始值 x ,容许误差 epsilon step : 计算梯度 g k nabla f x k ,if norm g k lt epsilon , break 输出当前值 x k else to step step : begin cases d k g k, amp text k d k g k beta k ...
2020-08-09 18:56 0 663 推荐指数:
syms f x1 x2 f=(1/2)*x1^2+x2^2; x=[2;1]; a=[1 0;0 2];% A g1=diff(f,x1); g2=diff(f,x2); g=[g1;g2] ...
的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法 ...
故事继续从选定方向的选定步长讲起 首先是下降最快的方向 -- 负梯度方向衍生出来的最速下降法 最速下降法 顾名思义,选择最快下降。包含两层意思:选择下降最快的方向,在这一方向上寻找最好的步长。到达后在下一个点重复该步骤。定方向 选步长 前进... 优化问题的模型:\(min f ...
(FR)共轭梯度法是介于最速下降法和牛顿法之间的一个方法,相比最速下降法收敛速度快,并且不需要像牛顿法一样计算Hesse矩阵,只需计算一阶导数 共轭梯度法是共轭方向法的一种,意思是搜索方向都互相共轭 共轭的定义如下: 共轭梯度法是一种典型的共轭方向法,它的搜索方向是负 ...
概述 优化问题就是在给定限制条件下寻找目标函数\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的极值点。极值可以分为整体极值或局部极值,整体极值即函数的最大/最小值,局部极值就是函数在有限邻域内的最大/最小值。通常都希望能求得函数的整体 ...
共轭梯度法(Python实现) 使用共轭梯度法,分别使用Armijo准则和Wolfe准则来求步长 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的极小值 运行结果 ...
最优化问题中常常需要求解目标函数的最大值或最小值,比如SVM支持向量机算法需要求解分类之间最短距离,神经网络中需要计算损失函数的最小值,分类树问题需要计算熵的最小或最大值等等。如果目标函数可求导常用梯度法,不能求导时一般选用模式搜索法。 一、梯度法求解最优问题 由数学分析知识可以知道 ...
% FR共轭梯度法 function sixge x0=[1,0]'; [x,val,k]=frcg('fun','gfun',x0) end function f=fun(x) f=100*(x(1)^2-x(2))^2+(x(1)-1)^2; end function g ...