本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/loss_function_1.py https://github.com/zhangxiann ...
前面学习了如何构建模型 模型初始化,本章学习损失函数。本章从 个方面学习, 损失函数的概念以及作用 学习交叉熵损失函数 学习其他损失函数NLL BCE BCEWithLogits Loss 损失函数概念 损失函数:衡量模型输出与真实标签的差异。 图 一元线性回归模型 如图 所示,一元线性回归模型中绿色点是训练样本,蓝色曲线是训练好的模型,从图中可以看出,该模型并未完全拟合到每 个数据点,即未能使得 ...
2020-08-09 10:19 0 541 推荐指数:
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/loss_function_1.py https://github.com/zhangxiann ...
1.损失函数---------经典损失函数--------交叉熵:交叉熵刻画了两个概率分布之间的距离,它是分类问题中使用比较广的一种损失函数。通过q来表示p的交叉熵为: Softmax将神经网络前向传播得到的结果变成概率分布,原始神经网络的输出被用作置信度来生成新的输出,而新的输出满足 ...
机器学习中的所有算法都依靠最小化或最大化函数,我们将其称为“目标函数”。被最小化的函数就被称为“损失函数”。损失函数也能衡量预测模型在预测期望结果方面的性能,如果预测值与实际结果偏离较远,损失函数会得到一个非常大的值。而在一些优化策略的辅助下,我们可以让模型“学会”逐步减少损失函数预测值的误差 ...
在深度学习中,损失函数扮演着至关重要的角色。通过对最小化损失函数,使模型达到收敛状态,减少模型预测值的误差。因此,不同的损失函数,对模型的影响是重大的。接下来,总结一下,在工作中经常用到的损失函数: 图像分类:交叉熵 目标检测:Focal loss,L1/L2损失函数,IOU Loss ...
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network ...
1、sigmoid函数 sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下。 1.1 从指数函数到sigmoid 首先我们来画出指数函数 ...
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri、Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像 ...
深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇“深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习”中我们介绍了监督学习和无监督学习相关概念。本文主要介绍神经网络常用的损失函数。 以下均为个人学习 ...