PyTorch 关于多 GPUs 时的指定使用特定 GPU. PyTorch 中的 Tensor,Variable 和 nn.Module(如 loss,layer和容器 Sequential) 等可以分别使用 CPU 和 GPU 版本,均是采用 .cuda() 方法. 如: 采用 ...
Pytorch指定GPU的方法 改变系统变量 改变系统环境变量仅使目标显卡,编辑 .bashrc文件,添加系统变量 在程序开头设置 在运行程序时指定 使用torch.cuda接口 使用pytorch的并行GPU接口 初始化模型时 ...
2020-07-21 15:29 0 873 推荐指数:
PyTorch 关于多 GPUs 时的指定使用特定 GPU. PyTorch 中的 Tensor,Variable 和 nn.Module(如 loss,layer和容器 Sequential) 等可以分别使用 CPU 和 GPU 版本,均是采用 .cuda() 方法. 如: 采用 ...
在使用pytorch的时候利用下面的语句指定GPU为仅为"6",但是用nvidia-smi查看GPU使用时,仍默认为"0"号 import pytorchimport osos.environ['CUDA_VISIBLE_DEVICES'] = '6'解决方案:将上述语句放到当前这个python ...
# 1: torch.cuda.set_device(1) # 2: device = torch.device("cuda:1") # 3:(官方推荐)import os os.environ["CUDA_VISIBLE_DEVICES"] = '1' (同时调用两块GPU的话 ...
PyTorch可以指定用来存储和计算的设备,如使用内存的CPU或者使用显存的GPU。在默认情况下,PyTorch会将数据创建在内存,然后利用CPU来计算。 PyTorch要求计算的所有输入数据都在内存或同一块显卡的显存上。 检测是否可以使用GPU,使用一个全局变量use_gpu ...
一、默认gpu加速 一般来说我们最常见到的用法是这样的: 或者说: 这样我们就可以把某一个向量或者模型进行gpu训练 二、指定gpu加速 来指定使用的具体设备。如果没有显式指定设备序号的话则使用torch.cuda.current_device()对应的序号。 ...
转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU。 有如下两种方法来指定需要使用的GPU。 1. 类似tensorflow指定GPU的方式,使用 ...
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU。 有如下两种方法来指定需要使用的GPU。 1. 类似tensorflow指定 ...
1.DataParallel layers (multi-GPU, distributed) 1)DataParallel 实现模块级别的数据并行 该容器是通过在batch维度上将输入分到指定的device中来在给定的module应用上实现并行。在前向传播中,模块 ...