本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现。 Word2vec Word2vec并不是一个模型——它其实是2013年Mikolov开源的一款用于计算词向量的工具。关于Word2vec更多的原理 ...
项目中使用了gensim计算帖子向量和相似度,model文件已经训练好,但是在运行的过程中发现,模型加载十分缓慢,需要大约 分钟,我们不能让用户等那么长时间,于是得想办法 想法,是否可以将其打包为api的方式,资源只需加载一次模型,然后利用即可,消耗小,速度快 查找各方资料比较中意的有 个方案Django和Flask, 者都是python的web服务框架,区别Django 是一个重量级的框架,Fl ...
2020-08-04 13:11 0 893 推荐指数:
本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现。 Word2vec Word2vec并不是一个模型——它其实是2013年Mikolov开源的一款用于计算词向量的工具。关于Word2vec更多的原理 ...
利用gensim 直接生成文档向量 ...
gensim intro doc | doc ZH Gensim是一个免费的 Python库,旨在从文档中自动提取语义主题,尽可能高效(计算机方面)和 painlessly(人性化)。 Gensim旨在处理原始的非结构化数字文本(纯文本)。 在Gensim的算法,比如Word2Vec ...
Word2Vec 词向量的稠密表达形式(无标签语料库训练) Word2vec中要到两个重要的模型,CBOW连续词袋模型和Skip-gram模型。两个模型都包含三层:输入层,投影层,输出层。 1.Skip-Gram神经网络模型(跳过一些词) skip-gram模型的输入是一个单词wI ...
doc2vec使用说明(一)gensim工具包TaggedLineDocument gensim 是处理文本的很强大的工具包,基于python环境下: 1.gensim可以做什么? 它可以完成的任务,参加gensim 主页API中给出的介绍,链接 ...
这篇是七月在线问答系统项目中使用到的一个算法,由于当时有总结,就先放上来了后期再整理。 Doc2vec Doc2vec又叫Paragraph Vector是Tomas Mikolov基于word2vec模型提出的,其具有一些优点,比如不用固定句子长度,接受不同长度的句子做训练 ...
和熟知的 Word2vec 类似,只不过 Word2vec 是训练词向量,而 Doc2vec 可以训练 ...
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值。 Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现 ...