前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败。如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看 ...
关于 CNN 基础理论可见:卷积神经网络 TensorFlow . 快速搭建神经网络:tf.keras 下面主要介绍: .搭建卷积神经网络的主要模块:卷积 批标准化 激活 池化 全连接 .经典卷积网络的搭建:LeNet AlexNet VGGNet InceptionNet ResNet。 卷积神经网络主要模块 . 卷积 Convolutional eg: . 批标准化 Batch Normali ...
2020-08-04 16:25 0 3958 推荐指数:
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败。如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看 ...
很玄学,没有修改参数,在test上的准确率从98%多变为99.1%了 参考链接:《简单粗暴Tensorflow》,狂吹 ...
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。每个神经元都接收一些输入,并做 ...
一.概述 卷积神经网络【Convolutional Neural Networks,CNN】是一类包含卷积计算且具有深度结构的前馈神经网络【Feedforward Neural Networks】是深度学习的代表算法之一。卷积神经网络具有表征学习【representation ...
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示。 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj ...
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂 ...
卷积神经网络(CNN) 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型 ...
1. 卷积神经网络结构介绍 卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。 CNN 有2大特点: 能够有效的将大数据量的图片降维成小数据量 能够有效的保留图片特征,符合图片处理的原则 目前 CNN 已经得到了广泛的应用,比如:人脸识别 ...