tf.keras 是 TensorFlow2 引入的高度封装框架,可以快速搭建神经网络模型。下面介绍一些常用API,更多内容可以参考官方文档:tensorflow 1 tf.keras 搭建神经网络六步法 import train, test model ...
以下内容主要用于完善上节六步法搭建神经网络的功能, import train, test lt 数据增强 gt model tf.keras.models.Sequential model.compile model.fit lt 断点续训 gt model.summary lt 参数提取,acc loss 可视化 gt lt 前向推理实现应用 gt 数据增强 增大数据量 mnist 数据集示例: ...
2020-08-02 23:32 0 806 推荐指数:
tf.keras 是 TensorFlow2 引入的高度封装框架,可以快速搭建神经网络模型。下面介绍一些常用API,更多内容可以参考官方文档:tensorflow 1 tf.keras 搭建神经网络六步法 import train, test model ...
关于 CNN 基础理论可见:卷积神经网络 TensorFlow2.0 快速搭建神经网络:tf.keras 下面主要介绍:1.搭建卷积神经网络的主要模块:卷积、批标准化、激活、池化、全连接; 2.经典卷积网络的搭建:LeNet、AlexNet、VGGNet ...
一、神经网络的实现过程 1、准备数据集,提取特征,作为输入喂给神经网络 2、搭建神经网络结构,从输入到输出 3、大量特征数据喂给 NN,迭代优化 NN 参数 4、使用训练好的模型预测和分类 二、前向传播 前向传播就是搭建模型的计算 ...
Keras是基于Tensorflow(以前还可以基于别的底层张量库,现在已并入TF)的高层API库。它帮我们实现了一系列经典的神经网络层(全连接层、卷积层、循环层等),以及简洁的迭代模型的接口,让我们能在模型层面写代码,从而不用仔细考虑模型各层张量之间的数据流动。 但是,当我们有了全新 ...
在定义了损失函数之后,需要通过优化器来寻找最小损失,下面介绍一些常见的优化方法。 (BGD,SGD,MBGD,Momentum,NAG,Adagrad,Adadelta,RMSprop,Adam,A ...
来自书籍:TensorFlow深度学习 一、卷积神经网络 1、卷积层 卷积核:kernel 步长:stride 填充:padding padding = same:如步长=2,卷积核扫描结束后还剩 1 个元素,不够卷积核扫描了,这个时候就在后面补 1 个零,补完 ...
来自书籍:TensorFlow深度学习 一、神经网络介绍 1、全连接层(前向传播) (1)张量方式实现:tf.matmul (2)层方式实现: ① layers.Dense(输出节点数,激活函数),输入节点数函数自动获取 fc.kernel:获取权值 ...
tf.keras + Sequential() 可以搭建出上层输入就是下层输出的顺序网络结构,但是无法写出一些带有跳连的非顺序网络结构。 这时候可以选择用类 class 搭建神经网络结构,即使用 class 类封装一个网络结构: ... class MyModel(Model ...