特点 相较于: 最优化算法3【拟牛顿法1】 BFGS算法使用秩二矩阵校正hesse矩阵的近似矩阵\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 将函数在\(x_{k+1}\)处二阶展开 ...
一 牛顿法 对于优化函数 f x ,在 x 处泰勒展开, f x f x f x x x o Delta x 去其线性部分,忽略高阶无穷小,令 f x 得: x x frac f x f x 得牛顿法迭代公式: x k x k frac f x k f x k 对于最优化问题 令导数等于零,得最优解,所以迭代公式为 x k x k frac nabla f x k frac partial f x ...
2020-07-31 21:24 0 562 推荐指数:
特点 相较于: 最优化算法3【拟牛顿法1】 BFGS算法使用秩二矩阵校正hesse矩阵的近似矩阵\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 将函数在\(x_{k+1}\)处二阶展开 ...
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要 ...
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下。下面将无约束项优化算法的细节进行描述。为了尊重别人的劳动成果,本文的出处 ...
牛顿法(英语:Newton's method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。 一般情况对于f(x)是一元二次的情况直接应用求根公式就可以 ...
牛顿法 ...
牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微。当前点记为$x_k$,最优点记为$x^*$。 梯度下降法用的是一阶偏导,牛顿法用二阶偏导。以标量为例,在当前点进行泰勒二阶展开: $$\varphi ...
注意修改原函数,一阶偏导函数,二阶偏导函 ...
牛顿法和拟牛顿法 牛顿法(Newton method)和拟牛顿法(quasi Newton method)是求解无约束最优化问题的常用方法,收敛速度快。牛顿法是迭代算法,每一步需要求解海赛矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似海赛矩阵的逆矩阵或海赛矩阵,简化了这一 ...