前言 在本篇章,我们将专门针对LSTM这种网络结构进行前向传播介绍和反向梯度推导。 关于LSTM的梯度推导,这一块确实挺不好掌握,原因有: 一些经典的deep learning 教程,例如花书缺乏相关的内容 一些经典的论文不太好看懂,例如On the difficulty ...
本内容为神经网络的梯度推导与代码验证系列内容的第一章,更多相关内容请见 神经网络的梯度推导与代码验证 系列介绍。 目录 . 数学符号 . 矩阵导数的定义和布局 . 矩阵求导的优势 . 矩阵微分与矩阵求导 . 矩阵微分性质归纳 . 标量对矩阵 向量的导数求解套路 迹技巧 . 向量微分与向量对向量求导的关系 . 矩阵向量求导链式法则 . 用矩阵求导来求解机器学习上的参数梯度 参考资料 . 数学符号 下 ...
2020-09-01 23:02 0 658 推荐指数:
前言 在本篇章,我们将专门针对LSTM这种网络结构进行前向传播介绍和反向梯度推导。 关于LSTM的梯度推导,这一块确实挺不好掌握,原因有: 一些经典的deep learning 教程,例如花书缺乏相关的内容 一些经典的论文不太好看懂,例如On the difficulty ...
在《神经网络的梯度推导与代码验证》之数学基础篇:矩阵微分与求导中,我们总结了一些用于推导神经网络反向梯度求导的重要的数学技巧。此外,通过一个简单的demo,我们初步了解了使用矩阵求导来批量求神经网络参数的做法。在本篇章,我们将专门针对DNN/FNN这种网络结构进行前向传播介绍和反向梯度推导。更多 ...
。 反向梯度求导涉及到矩阵微分和求导的相关知识,请见《神经网络的梯度推导与代码验证》之数学基础篇:矩阵微分 ...
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性。在本篇章,我们将专门针对CNN这种网络结构进行前向传播介绍和反向梯度推导。更多相关内容请见《神经网络的梯度 ...
在《神经网络的梯度推导与代码验证》之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面。本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化。更多相关内容请见《神经网络的梯度推导 ...
在《神经网络的梯度推导与代码验证》之FNN(DNN)的前向传播和反向梯度推导中,我们学习了FNN(DNN)的前向传播和反向梯度求导,但知识仍停留在纸面。本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化。更多相关内容请见 ...
最近在跟着Andrew Ng老师学习深度神经网络.在学习浅层神经网络(两层)的时候,推导反向传播公式遇到了一些困惑,网上没有找到系统推导的过程.后来通过学习矩阵求导相关技巧,终于搞清楚了.首先从最简单的logistics回归(单层神经网络)开始. logistics regression中的梯度 ...
https://blog.csdn.net/u012328159/article/details/80081962 https://mp.weixin.qq.com/s?__biz=MzUxMDg4 ...