原文:数据预处理和特征工程

目录 数据挖掘的五大流程 数据预处理 preprocessing 数据归一化 数据标准化 缺失值处理 处理离散型特征和非数值型标签 处理连续型特征 二值化 分箱 特征选择 feature selection 特征提取 feature extraction Filter过滤法 方差过滤 相关性过滤 卡方过滤 F检验 互信息法 Embedded嵌入法 Wrapper包装法 数据挖掘的五大流程 获取数 ...

2020-07-24 14:25 0 685 推荐指数:

查看详情

特征工程(4)-数据预处理二值化

https://www.deeplearn.me/1389.html 上一篇文章讲解了区间缩放法处理数据,接下来就讲解二值化处理 这个应该很简单了,从字面意思就是将数据分为 0 或者 1,联想到之前图像处理里面二值化处理变为黑白图片 下面还是进入主题吧 首先给出当前的二值化处理公式 ...

Wed May 09 02:55:00 CST 2018 0 1247
sklearn中的数据预处理特征工程

  小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考:   Python 3.7.1(你的版本至少 ...

Thu May 30 20:07:00 CST 2019 2 4225
特征工程(5)-数据预处理哑编码

https://www.deeplearn.me/1393.html 哑编码概念 先来讲解下哑编码的概念吧,当你的变量不是定量特征的时候是无法拿去进行训练模型的,哑编码主要是针对定性的特征进行处理然后得到可以用来训练的特征 关于定性和定量还是在这里也说明下,举个例子就可以看懂了 定性 ...

Wed May 09 02:54:00 CST 2018 0 3858
数据预处理特征工程:哑变量(离散数据)

处理分类型特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理 文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fifit的时候全部要求输入数组或矩阵,也不能够导 入文字型数据(其实手写 ...

Wed Jun 09 17:46:00 CST 2021 0 987
1. 特征工程特征预处理

1. 特征工程特征预处理 2. 特征工程特征选择 1. 前言 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征 ...

Thu Nov 15 07:13:00 CST 2018 0 4072
特征工程特征预处理

    在前面我们分别讨论了特征工程中的特征选择与特征表达,本文我们来讨论特征预处理的相关问题。主要包括特征的归一化和标准化,异常特征样本清洗与样本数据不平衡问题的处理。 1. 特征的标准化和归一化      由于标准化和归一化这两个词经常混用,所以本文不再区别标准化和归一化,而通过具体 ...

Sun May 27 04:23:00 CST 2018 102 17762
机器学习 | 特征工程(一)- 数据预处理

本文将以iris数据集为例,梳理数据挖掘和机器学习过程中数据预处理的流程。在前期阶段,已完成了数据采集、数据格式化、数据清洗和采样等阶段。通过特征提取,能得到未经处理特征,但特征可能会有如下问题:   - 不属于同一量纲 通常采用无量纲化进行处理;   - 信息冗余 ...

Tue Sep 11 22:07:00 CST 2018 0 2020
python数据特征预处理

一、属性规约 在进行数据预处理的过程中,如果数据的某一列都是一样的或者属性是一样的,那么这一列对我们的预测没有帮助,应该将这一列去掉,pandas中如果某一列属性值相同,但是此列中有缺失值(NaN),pandas会默认其有两个属性,我们在进行此操作的过程中应该首先去掉缺失值,然后检查唯一性。代码 ...

Sun May 13 17:32:00 CST 2018 0 1441
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM