原文:交叉熵损失函数原理详解

交叉熵损失函数原理详解 一 总结 一句话总结: 叉熵损失函数 CrossEntropy Loss :分类问题中经常使用的一种损失函数 交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实概率分布与预测概率分布之间的差异。交叉熵的值越小,模型预测效果就越好。 交叉熵在分类问题中常常与softmax是标配,softmax将输出的结果进行处理,使其多个分类的预测值和为 , ...

2020-07-21 15:08 0 667 推荐指数:

查看详情

交叉损失函数

交叉损失函数 的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...

Fri Apr 28 23:39:00 CST 2017 1 6494
交叉损失函数

1. Cross entropy 交叉损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...

Mon Jul 29 01:26:00 CST 2019 0 5788
交叉损失函数

交叉损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...

Sat Aug 26 23:15:00 CST 2017 2 8431
损失函数交叉

损失函数交叉 交叉用于比较两个不同概率模型之间的距离。即先把模型转换成这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...

Tue Aug 03 05:26:00 CST 2021 0 114
交叉损失函数

交叉损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉形式上的不同呢? 两种形式 这两个都是交叉损失函数,但是看起来长的却有天壤之别。为什么同是交叉损失函数,长的却不一样? 因为这两个交叉损失函数对应不同的最后一层的输出:第一个对应的最后一层 ...

Mon Dec 24 06:27:00 CST 2018 0 11393
交叉--损失函数

【简介】   交叉(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉和复杂度(perplexity)来衡量。交叉的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义 ...

Wed Apr 18 17:31:00 CST 2018 2 16776
损失函数——均方误差和交叉

1.MSE(均方误差) MSE是指真实值与预测值(估计值)差平方的期望,计算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得结果越大,表明预测效果越差,即y和y'相差越大 2.Cross Entropy Loss(交叉) 在理解交叉之前 ...

Mon Jan 27 23:04:00 CST 2020 1 1175
交叉损失函数和均方误差损失函数

交叉 分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为 g0=[0,1,0,0] ,实际输出为 g1=[0.2,0.4,0.4,0] ,计算g1与g0之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数交叉交叉 ...

Fri Apr 20 04:31:00 CST 2018 0 1102
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM