自然语言处理的一个基本问题就是为其上下文相关的特性建立数学模型,即统计语言模型(Statistical Language Model),它是自然语言处理的基础。 1 用数学的方法描述语言规律 假定S表示某个有意义的句子,由一连串特定顺序排列的词ω1,ω2,...,ωn组成,这里n是句子的长度 ...
定义 什么是语言模型,通俗的讲就是从语法上判断一句话是否通顺。即判断如下的概率成立: p text 今天是周末 gt p text 周末是今天 链式法则 chain rule p w ,w ,...,w n p w p w w p w w ,w ...p w n w ,w ,...,w n Markov assumption Markov assumption first order p w ,w ...
2020-07-16 22:01 0 758 推荐指数:
自然语言处理的一个基本问题就是为其上下文相关的特性建立数学模型,即统计语言模型(Statistical Language Model),它是自然语言处理的基础。 1 用数学的方法描述语言规律 假定S表示某个有意义的句子,由一连串特定顺序排列的词ω1,ω2,...,ωn组成,这里n是句子的长度 ...
自回归语言模型(Autoregressive LM) 在ELMO/BERT出来之前,大家通常讲的语言模型其实是根据上文内容预测下一个可能跟随的单词,就是常说的自左向右的语言模型任务,或者反过来也行,就是根据下文预测前面的单词,这种类型的LM被称为自回归语言模型。GPT 就是典型的自回归语言模型 ...
前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子。现在假设读者已经懂得了使用CNTK的基本方法。现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型。 递归神经网络 (RNN),用图形化的表示则是隐层 ...
论文地址:http://www.iro.umontreal.ca/~vincentp/Publications/lm_jmlr.pdf 论文给出了NNLM的框架图: 针对论文,实现代码如下(https://github.com/graykode/nlp-tutorial): ...
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据。那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程。这里面就包括如图中所示的模型和算法,包括 ...
unit的RNN模型: BiLSTM RNN model: ...
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子 ,其中 代表句子中的第 个词语,则语句 W 以该顺序出现的概率可以表示为: 其中 , $p(w_n|w_1^{n-1}) = p ...
有了一个语言模型,就要判断这个模型的好坏。 现在假设: 我们有一些测试数据,test data.测试数据中有m个句子;s1,s2,s3…,sm 我们可以查看在某个模型下面的概率: 我们也知道,如果计算相乘是非常麻烦的,可以在此基础上,以另一种形式来计算模型的好坏程度。 在相乘 ...