参考链接:http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc 1. 平方损失函数:MSE- L2 Loss $$MSE = \sum_{i = 1}^n (y_i - \hat{y_i ...
. 均方误差MSE 归一化的均方误差 NMSE . 平均绝对误差MAE . Huber损失函数 .Log Cosh损失函数 . 实例 . tanh Python中直接调用np.tanh 即可计算。 参考:https: zhuanlan.zhihu.com p ...
2020-07-15 19:26 0 587 推荐指数:
参考链接:http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc 1. 平方损失函数:MSE- L2 Loss $$MSE = \sum_{i = 1}^n (y_i - \hat{y_i ...
sum_weights 可以通过参数设置。 如果不设置,那么值就是样本的个数。 指定每个样本的权重。 我突然想到基金预测,可以设置样本的权重。 真实涨幅越高,权重越小。 反之,权重越高。 因为如果预测偏低,那么loss 损失越大 ...
“损失函数”是机器学习优化中至关重要的一部分。L1、L2损失函数相信大多数人都早已不陌生。那你了解Huber损失、Log-Cosh损失、以及常用于计算预测区间的分位数损失函数么?这些可都是机器学习大牛最常用的回归损失函数哦! 机器学习中所有的算法都需要最大化或最小化一个函数,这个函数被称为“目标 ...
引言 上一篇笔记中已经记录了,如何对一个无解的线性方程组\(Ax=b\)求近似解。在这里,我们先来回顾两个知识点: 如何判断一个线性方程组无解:如果拿上面那个方程组\(Ax=b\)举例,那就 ...
的病人,你只能知道他3个月后到底是病危或者存活。所以线性回归并不适用这种场景。 logistic函数 ...
损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常 ...
损失函数的基本用法: 得到的loss结果已经对mini-batch数量取了平均值 1.BCELoss(二分类) 创建一个衡量目标和输出之间二进制交叉熵的criterion unreduced loss函数(即reduction参数设置为'none ...
一、Smooth L1 Loss 1.公式: 2.原因: L1损失使权值稀疏但是导数不连续,L2损失导数连续可以防止过拟合但对噪声不够鲁棒,分段结合两者优势。 二、Focal Loss 1.公式: 2.作用 ...