(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸。 原因:前面层上的梯度是来自于后面层上梯度的乘乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸。 (2)梯度消失(vanishing ...
目录 梯度消失原因之一:激活函数 梯度消失原因之二:初始化权重 不同损失函数下RNN的梯度消失程度对比 实践中遇到梯度消失怎么办 参考资料 在实践过程中,RNN的一个缺点是在训练的过程中容易梯度消失。 梯度消失原因之一:激活函数 sigmod的导函数峰值为 . ,由于反向传播的距离越长,连乘的小数越多,所以sigmod一定会产生梯度消失,并且很严重。但是因为tanh的导函数峰值为 ,所以tanh造 ...
2020-07-11 19:49 0 731 推荐指数:
(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸。 原因:前面层上的梯度是来自于后面层上梯度的乘乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸。 (2)梯度消失(vanishing ...
目录 梯度消失 梯度爆炸 参考资料 以下图的全连接神经网络为例,来演示梯度爆炸和梯度消失: 梯度消失 在模型参数w都是(-1,1)之间的数的前提下,如果激活函数选择的是sigmod(x),那么他的导函数σ’(x ...
目录 定义网络 梯度反向传播 梯度更新 面试时的变相问法 参考资料 BPTT(back-propagation through time)算法是常用的训练RNN的方法,其实本质还是BP算法,只不过RNN处理时间序列数据,所以要基于时间反向传播,故叫随时间反向传播 ...
目录 回顾简单RNN的梯度消失问题 LSTM如何解决梯度消失 遗忘门对梯度消失的影响 遗忘门的初始化技巧 参考资料 回顾简单RNN的梯度消失问题 在简单RNN的前向传播过程中,输入的数据循环地与隐藏层里的权重 ...
目录 一元函数的梯度下降法 多元函数的梯度下降法 参考资料 梯度下降是一种迭代式的最优化手段,在机器学习中一般用于求目标函数的极小值点,这个极小值点就是最优的模型内部参数。相比求解析解的手段,GD的通用性更强,所以受到广泛的使用。 一元函数 ...
算法部门的一道面试题。 其实这个题目并不难,我们举一个例子,然后结合pytorch工具做验证。 ...
梯度消失或爆炸问题: http://blog.csdn.net/qq_29133371/article/details/51867856 ...
目录 一元线性回归模型 一元线性回归代价函数图像 梯度下降求解 SGD、BGD、Mini-batchGD的特点 参考资料 在《深度学习面试题03改进版梯度下降法Adagrad、RMSprop、Momentum、Adam》中讲到了多种改进的梯度下降公式。而这 ...