注意:版权所有,转载需注明出处。 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂。 在开始推导之前,需要先做一些准备工作,推导中所使用的神经网络如上图所示。一个神经网络由多个层(layer)构成,每一层有若干个节点 ...
BP算法是迄今为止最为成功的神经网络学习算法,下面主要以多层前馈神经网络为例推导该算法。 . M P 神经元模型 图 展示了一个经典的神经元模型。在这个模型中,该神经元收到其他神经元传来的 个输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过 激活函数 处理以产生神经元的输出。 图 M P 神经元模型 . 激活函数 图 中的神经元输出可以表示 ...
2020-07-11 23:42 0 804 推荐指数:
注意:版权所有,转载需注明出处。 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂。 在开始推导之前,需要先做一些准备工作,推导中所使用的神经网络如上图所示。一个神经网络由多个层(layer)构成,每一层有若干个节点 ...
误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练。 给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l ...
本人弱学校的CS 渣硕一枚,在找工作的时候,发现好多公司都对深度学习有要求,尤其是CNN和RNN,好吧,啥也不说了,拿过来好好看看。以前看习西瓜书的时候神经网络这块就是一个看的很模糊的块,包括台大的视频,上边有AutoEncoder,感觉很乱,所以总和了各种博客,各路大神的知识,总结如果,如有 ...
反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解。 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能) 这就要求对梯度下降法做少许改进。 实现过程 ...
三、误差逆传播算法(BP) 1、BP算法 多层网络的学习能力比单层感知机强得多。欲训练多层网络,简单感知学习规则显然不够了,需要更强大的学习算法。误差逆传播(errorBackPropagation,简称BP)算法就是其中最杰出的代表。BP算法是迄今最成功的神经网络学习算法 ...
1. 误差反向传播算法(Back Propagation): ①将训练集数据输入到神经网络的输入层,经过隐藏层,最后达到输出层并输出结果,这就是前向传播过程。②由于神经网络的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;③在反向 ...
BP神经网络:误差反向传播算法公式推导 开端: BP算法提出 1. BP神经网络参数符号及激活函数说明 2. 网络输出误差(损失函数)定义 3. 隐藏层与输出层间的权重更新公式推导 ...
构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度。(x1=(1,2,3),则需要三个输入神经元 一 前向后传播 隐层: 输出层: 一般化 ,向量 ...