原文:卷积核及其个数的理解

第一次接触的时候,已经理解了,但是过了一段时间,就有点忘了下面这两篇文章,不错 可以帮助回忆与理解。 https: blog.csdn.net zyqdragon article details https: blog.csdn.net xys article details https: blog.csdn.net caomin hao article details ...

2020-07-10 16:48 0 855 推荐指数:

查看详情

1*1卷积核理解和作用

权值共享基本上有两种方法: 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列) 第二种只在同一特征图上 ...

Thu Oct 04 05:13:00 CST 2018 0 4784
1×1卷积核理解

1*1的卷积核在NIN、Googlenet中被广泛使用,但其到底有什么作用也是一直困扰的问题,这里总结和归纳下在网上查到的自认为很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升维和降维 3)减少卷积核参数(简化模型) 1 - 引入   在我学习吴恩达老师 ...

Tue Sep 18 06:44:00 CST 2018 0 7155
关于1*1卷积核理解

发现很多网络使用1×1的卷积核,实际就是对输入的一个比例缩放,因为1×1卷积核只有一个参数,这个在输入上滑动,就相当于给输入数据乘以一个系数。(对于单通道和单个卷积核而言这样理解是可以的) 对于多通道和多个卷积核理解,1×1卷积核大概有两方面的作用:1.实现跨通道的交互和信息整合(具有 ...

Wed Sep 20 03:24:00 CST 2017 0 5388
卷积核

以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...

Fri Dec 04 06:38:00 CST 2020 0 751
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM