PyTorch手写数字识别(MNIST数据集) https://blog.csdn.net/weixin_44613063/article/details/90815082 MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解 ...
PyTorch手写数字识别(MNIST数据集) https://blog.csdn.net/weixin_44613063/article/details/90815082 MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解 ...
MNIST数据集介绍 MNIST数据集中包含了各种各样的手写数字图片,数据集的官网是:http://yann.lecun.com/exdb/mnist/index.html,我们可以从这里下载数据集。使用如下的代码对数据集进行加载: 运行上述代码会自动下载数据集并将文件解压 ...
下载python源代码之后,使用: 下载下来的数据集分成: mnist.train.images 60000*784 mnist.train.labels 60000*10 mnist.test.images 60000*784 mnist ...
在TensorFlow的官方入门课程中,多次用到mnist数据集。 mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-ubyte的二进制文件。 如果我们想要知道大名鼎鼎的mnist手写体数字都长什么样子,就需要从mnist ...
文章目录 1. 学习目标 2. 环境配置 2.1. Python 2.2. Pytorch 2.3. Jupyter ...
github博客传送门 csdn博客传送门 本章所需知识: 没有基础的请观看深度学习系列视频 tensorflow Python基础 资料下载链接: 深度学习基础网络模型(mnist手写体识别数据集) MNIST数据集手写体识别(CNN实现) 最后附上训练截图: ...
首先引入需要的包 载入数据集,使数据中心化(减去平均值) 先看一下前16张训练机和数据集都长什么样, 使用plt画出图像 求出平均脸, 简单计算,其实就是把每个像素求出平均值, 画出来看看, 就长这样 所有图片都减去平均脸 把所有像素摊平(都变成 ...
记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对。 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码。 mnist数据集训练数据一共有28*28*60000个像素,标签有60000个。 测试数据一共有28*28*10000个,标签10000 ...