本文是学习B站老哥数学建模课程之后的一点笔记。 BP(back propagation)算法神经网络的简单原理 BP神经网络是一种采用BP学习算法(按照误差逆向传播训练)的多层前馈神经网络,是应用最广泛的神经网络。 神经网络基本结构如下: 共分为三层,可以理解为一组输入 ...
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测。 简介 BP神经网络 Back Propagation Neural Network 是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整。在 世纪 年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的。其包 ...
2020-07-29 11:30 6 1454 推荐指数:
本文是学习B站老哥数学建模课程之后的一点笔记。 BP(back propagation)算法神经网络的简单原理 BP神经网络是一种采用BP学习算法(按照误差逆向传播训练)的多层前馈神经网络,是应用最广泛的神经网络。 神经网络基本结构如下: 共分为三层,可以理解为一组输入 ...
1. 算法原理 1.1 概述 人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络 ...
神经网络的结构 神经网络的网络结构由输入层,隐含层,输出层组成。隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层。下面是一个三层的神经网络,包含了两层隐含层,一个输出层。其中第一层隐含层的节点数为3,第二层的节点数为2,输出层的节点数为1;输入层为样本的两个特征X1 ...
一、BP算法的意义 对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。 1.1、历史意义 1969年,作为人工神经网络创始人的明斯基(Marrin M ...
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数、离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法 ...
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! 【毒鸡汤】:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你。 本文 ...
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。 一个 ...
前言:自己动手推导了一下经典的前向反馈神经网络的算法公式,记录一下。由于暂时没有数据可以用作测试,程序没有实现并验证。以后找到比较好的数据,再进行实现。 一:算法推导 神经网络通过模拟人的神经元活动,来构造分类器。它的基本组成单元称为”神经元”,离线情况下如果输入大于某值时,设定神经元处于 ...