原文:[TensorFlow2.0]-正则化

本人人工智能初学者,现在在学习TensorFlow . ,对一些学习内容做一下笔记。笔记中,有些内容理解可能较为肤浅 有偏差等,各位在阅读时如有发现问题,请评论或者邮箱 右侧边栏有邮箱地址 提醒。 若有小伙伴需要笔记的可复制的html或ipynb格式文件,请评论区留下你们的邮箱,或者邮箱 右侧边栏有邮箱地址 联系本人。 ...

2020-07-06 20:58 0 589 推荐指数:

查看详情

TensorFlow(三)---------正则化

TensorFlow正则化经常被用于Deep-Learn中,泛化数据模型,解决过拟合问题。再深度学习网络只有在有足够大的数据集时才能产生惊人的学习效果。当数据量不够时,过拟合的问题就会经常发生。然而,只选取我们需要的数据量的模型,就会非常难以继续进行泛化和优化。所以正则化技术孕育而生 ...

Mon Nov 13 04:58:00 CST 2017 0 1339
tensorflow中的正则化及数据增强

正则化: 一般可以通过减少特征或者惩罚不重要特征的权重来缓解过拟合,但是我们通常不知道该惩罚那些特征的权重,而正则化就是帮助我们惩罚特征权重的,即特征的权重也会成为模型的损失函数一部分。可以理解为, 为了使用某个特征,我们需要付出loss的代价(loss为给权重weight加的一个loss ...

Thu Nov 30 18:06:00 CST 2017 0 3585
TensorFlow 过拟合与正则化(regularizer)

所谓过拟合,就是当一个模型过于复杂后,它可以很好的处理训练数据的每一个数据,甚至包括其中的随机噪点。而没有总结训练数据中趋势。使得在应对未知数据时错误里一下变得很大。这明显不是我们要的结果。 我们想 ...

Mon Dec 18 23:04:00 CST 2017 0 4068
TensorFlow——dropout和正则化的相关方法

1.dropout dropout是一种常用的手段,用来防止过拟合的,dropout的意思是在训练过程中每次都随机选择一部分节点不要去学习,减少神经元的数量来降低模型的复杂度,同时增加模型的泛化能力。虽然会使得学习速度降低,因而需要合理的设置保留的节点数量。 在TensorFlow中 ...

Mon Jun 03 04:25:00 CST 2019 0 788
TensorFlow正则化添加方法整理

一、基础正则化函数 tf.contrib.layers.l1_regularizer(scale, scope=None) 返回一个用来执行L1正则化的函数,函数的签名是func(weights). 参数: scale: 正则项的系数. scope: 可选的scope name ...

Tue Aug 14 22:21:00 CST 2018 1 9657
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM