如何从一个深度图像(range image)中提取NARF特征 代码解析narf_feature_extraction.cpp 编译运行./narf_feature_extraction -m 这将自动生成一个呈矩形的点云,检测的特征点处在角落处,参数-m是必要的,因为矩形周围 ...
目录 一 点云特征的基本要求 二 点云特征的分类 三 点云的基本特征描述 四 PCA Princile Components Analysis 主成分分析 . 谱定理 Spectral Theorem . Rayleigh Quotients . SVD分解的物理意义 . 点云的PCA步骤 . 应用:PCA Dimensionality Reduction 打赏 支付宝 微信 一 点云特征的基本 ...
2020-07-03 11:23 2 2813 推荐指数:
如何从一个深度图像(range image)中提取NARF特征 代码解析narf_feature_extraction.cpp 编译运行./narf_feature_extraction -m 这将自动生成一个呈矩形的点云,检测的特征点处在角落处,参数-m是必要的,因为矩形周围 ...
作者:小毛 Date:2020-05-07 来源: 点云局部特征描述综述 1.引言 在计算机视觉发展初期,机器对客观世界的视觉感知主要依赖相机捕获的二维图像或图像序列。然而世界在欧氏空间内是三维的,图像 ...
3D点云特征描述与提取是点云信息处理中最基础也是最关键的一部分,点云的识别。分割,重采样,配准曲面重建等处理大部分算法,都严重依赖特征描述与提取的结果。从尺度上来分,一般分为局部特征的描述和全局特征的描述,例如局部的法线等几何形状特征的描述,全局的拓朴特征的描述,都属于3D点云特征描述与提取的范畴 ...
点特征直方图(PFH)描述子 正如点特征表示法所示,表面法线和曲率估计是某个点周围的几何特征基本表示法。虽然计算非常快速容易,但是无法获得太多信息,因为它们只使用很少的几个参数值来近似表示一个点的k邻域的几何特征。然而大部分场景中包含许多特征点,这些特征点有相同的或者非常相近的特征 ...
快速点特征直方图(FPFH)描述子 已知点云P中有n个点,那么它的点特征直方图(PFH)的理论计算复杂度是,其中k是点云P中每个点p计算特征向量时考虑的邻域数量。对于实时应用或接近实时应用中,密集点云的点特征直方图(PFH)的计算,是一个主要的性能瓶颈。此处为PFH计算方式的简化形式,称为快速点 ...
简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度直方图描述特征点的传统方法 ...
作者:千百度 点击上方“3D视觉工坊”,选择“星标” 干货第一时间送达 概要 论文: Fully Convolutional Geometric Features 标签: ICCV ...
现实生活中的事物被抽象成对象,把具有相同属性和行为的对象被抽象成类,再从具有相同属性和行为的类中抽象出父类。 封装 隐藏对象的属性和实现细节,仅仅对外公开接口。 封装的有优点: 1.便 ...