(转)K-Means 聚类算法中k的确定及初始簇中心的选择 原文链接如下: https://blog.csdn.net/u012197703/article/details/79434005 转自:http://www.cnblogs.com/kemaswill/archive ...
一 第一种初始化簇中心的方法:随机产生k个簇中心,保证簇中心的每个维度的取值都在这个纬度所有值的最小值与最大值的左闭右开区间内 二 第二种K Means算法,初始化簇中心的时候使用了概率模型,能够选出k个相聚较远的点。在这个算法中,我们通过十次有效的划分,计算出最少的损失函数SSE的值,将这个值对应的分类返回 三 加载数据 数据来源 三类标签分别有七十个 大体上分成了三类,但是效果怎么样还有待评估 ...
2020-06-30 22:35 0 1425 推荐指数:
(转)K-Means 聚类算法中k的确定及初始簇中心的选择 原文链接如下: https://blog.csdn.net/u012197703/article/details/79434005 转自:http://www.cnblogs.com/kemaswill/archive ...
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢? 我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y ...
1. 归类: 聚类(clustering):属于非监督学习(unsupervised learning) 无类别标记(class label) 2. 举例: 3. Kmeans算法 3.1 clustering中的经典算法 ...
Mini Batch K-Means算法是K-Means算法的一种优化变种,采用小规模的数据子集(每次训练使用的数据集是在训练算法的时候随机抽取的数据子集)减少计算时间,同时试图优化目标函数; Mini Batch K-Means算法可以减少K- Means算法的收敛时间,而且产生的结果效果 ...
一、简介 K-Means 是一种非监督学习,解决的是聚类问题。K 代表的是 K 类,Means 代表的是中心,你可以理解这个算法的本质是确定 K 类的中心点,当你找到了这些中心点,也就完成了聚类。 /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https ...
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习。我们都知道每一届的美国总统大选,那叫一个竞争激烈。可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大。有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归 ...
K-means(K均值)是基于数据划分的无监督聚类算法。 一、基本原理 聚类算法可以理解为无监督的分类方法,即样本集预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类。简单来说就是,给一堆数据让你分类,但是你对这些数据的类别一无所知,因此,需要找到某种度量方式来比 ...