1. Python环境设置和Flask基础 使用“Anaconda”创建一个虚拟环境。如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,“Anaconda”发行版是一个不错的选择。 安装here wget https ...
作者 LAKSHAY ARORA 编译 VK 来源 Analytics Vidhya 概述 PyCaret是一个超级有用的Python库,用于在短时间内执行多个机器学习任务 学习如何依赖PyCaret在几行代码中构建复杂的机器学习模型 介绍 我建立的第一个机器学习模型是一个相当麻烦的代码块。我仍然记得构建一个集成模型,它需要许多行代码,它十分需要一个向导来解开这些混乱的代码 当涉及到构建可解释的机 ...
2020-06-30 14:47 0 2203 推荐指数:
1. Python环境设置和Flask基础 使用“Anaconda”创建一个虚拟环境。如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,“Anaconda”发行版是一个不错的选择。 安装here wget https ...
如何通过7个步骤构建机器学习模型 组织构建一个可行的、可靠的、敏捷的机器学习模型来简化操作和支持其业务计划需要耐心、准备以及毅力。 各种组织都在为各行业中的众多应用实施人工智能项目。这些应用包括预测分析、模式识别系统、自主系统、会话系统、超个性化活动和目标驱动系统 ...
1、安装 在谷歌colab中还要运行: 2、获取数据 (1)利用pandas库加载 (2)使用自带的数据 数据集列表: Dataset Data Types Default Task ...
作者|LAKSHAY ARORA 编译|VK 来源|Analytics Vidhya 概述 部署机器学习模型是每个ML项目的一个关键 学习如何使用Flask将机器学习模型部署到生产中 模型部署是数据科学家访谈中的一个核心话题 介绍 我记得我早期在机器学习领域 ...
PMML简介 预测模型标记语言PMML(Predictive Model Markup Language)是一套与平台和环境无关的模型表示语言,是目前表示机器学习模型的实际标准。 作为一个开放的成熟标准,PMML由数据挖掘组织DMG(Data Mining Group)开发和维护,经过十几年 ...
二、机器学习模型评估 2.1 模型评估:基本概念 错误率(Error Rate) 预测错误的样本数a占样本总数的比例m \[E=\frac{a}{m} \] 准确率(Accuracy) 准确率=1-错误率准确率=1−错误率 误差 ...
'没有测量,就没有科学'这是科学家门捷列夫的名言。在计算机科学特别是机器学习领域中,对模型的评估同样至关重要,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要分为离线评估和在线评估两个阶段。针对分类、排序、回归、序列预测等不同类 ...
朴素贝叶斯(分类) 目录 朴素贝叶斯(分类) 决策树(分类) 算法核心 信息熵 信息量化 熵 信息 ...