num_sequence.py """ 数字序列化方法 """ class NumSequence: """ input : intintint output :[i ...
参考: 超越BERT GPT,微软提出通用预训练模型MASS 微软在ICML 提出全新的通用预训练方法MASS,在序列到序列的自然语言生成任务中全面超越BERT和GPT。在微软参加的WMT 机器翻译比赛中,MASS帮助中 英 英 立陶宛两个语言对取得了第一名的成绩。 MASS: Masked Sequence to Sequence Pre training MASS对句子随机屏蔽一个长度为k的 ...
2020-06-28 16:44 0 744 推荐指数:
num_sequence.py """ 数字序列化方法 """ class NumSequence: """ input : intintint output :[i ...
向右解码的方式,适用于自然语言生成NLG任务 自编码 autoencoder 语言模型,如BERT,每 ...
2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习网 ...
注意力seq2seq模型 大部分的seq2seq模型,对所有的输入,一视同仁,同等处理。 但实际上,输出是由输入的各个重点部分产生的。 比如: (举例使用,实际比重不是这样) 对于输出“晚上”, 各个输入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 对于输出“吃 ...
Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的。基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译 ...
1. 什么是seq2seq 在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如: 英语输⼊:“They”、“are”、“watching”、“.” 法语输出:“Ils ...
Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是 ...
以下代码可以让你更加熟悉seq2seq模型机制 参考:https://blog.csdn.net/weixin_43632501/article/details/98525673 ...