一、梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸。 原因:前面层上的梯度是来自于后面层上梯度的乘乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸。 二、梯度消失(vanishing gradient ...
梯度消失问题和梯度爆炸问题,总的来说可以称为梯度不稳定问题。 要背住的知识 :用ReLU代替Sigmoid,用BN层,用残差结构解决梯度消失问题。梯度爆炸问题的话,可以用正则化来限制。sigmoid的导数是 , . . 出现原因 两者出现原因都是因为链式法则。当模型的层数过多的时候,计算梯度的时候就会出现非常多的乘积项。用下面这个例子来理解: 这是每层只有 个神经元的例子,每个神经元的激活函数都是 ...
2020-06-21 18:51 0 2502 推荐指数:
一、梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸。 原因:前面层上的梯度是来自于后面层上梯度的乘乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸。 二、梯度消失(vanishing gradient ...
梯度消失和梯度爆炸的解决之道 参考<机器学习炼丹术> 因为梯度不稳定,因此产生梯度消失和梯度爆炸的问题 出现原因 梯度消失和梯度爆炸是指前面几层的梯度,因为链式法则不断乘小于(大于)1的数,导致梯度非常小(大)的现象; sigmoid导数最大0.25,一般都是梯度消失问题 ...
from:https://zhuanlan.zhihu.com/p/44163528 哪些问题? 梯度消失会导致我们的神经网络中前面层的网络权重无法得到更新,也就停止了学习。 梯度爆炸会使得学习不稳定, 参数变化太大导致无法获取最优参数。 在深度多层感知机网络中,梯度爆炸会导致 ...
这篇博文主要讲解下梯度与方向导数的关系、等值线图中梯度的表示,以及梯度的应用。因涉及太多高数的知识点,在此就不一一详述了,只是简单梳理下知识点,有所纰漏还望纠正指出,文末附有参考文献,借图。 一、方向导数与梯度 1、方向导数 导数引言 我们知道在二维平面上,F(x ...
梯度爆炸/消失 梯度消失 : 参数更新过小,在每次更新时几乎不会移动,导致模型无法学习。 梯度爆炸 : 参数更新过大,破坏了模型的稳定收敛。 具体的可以参考沐神D2l文章:http://zh.d2l.ai/chapter_multilayer-perceptrons ...
梯度在神经网络中的作用 在谈梯度消失和梯度爆炸的问题之前,我们先来考虑一下为什么我们要利用梯度,同时铺垫一些公式,以便于后面的理解。 存在梯度消失和梯度爆炸问题的根本原因就是我们在深度神网络中利用反向传播的思想来进行权重的更新。即根据损失函数计算出的误差,然后通过梯度反向传播来减小误差、更新 ...
梯度消失和梯度爆炸其实是一种情况:均是在神经网络中,当前面隐藏层的学习速率低于后面隐藏层的学习速率,即随着隐藏层数目的增加,分类准确率反而下降了。 梯度消失产生的原因: (1)隐藏层的层数过多; (2)采用了不合适的激活函数(更容易产生梯度消失,但是也有可能产生梯度爆炸) 梯度爆炸产生 ...
在学习李宏毅老师机器学习的相关视频时,课下做了一个有关神经网络的小Demo,但是运行效果总是不尽人意,上网查询资料,才发现是梯度爆炸和梯度消失惹的祸。今天就让我们一起来学习一下梯度消失与梯度爆炸的概念、产生原因以及该如何解决。 目录 1.梯度消失与梯度爆炸的概念 2.梯度消失与梯度爆炸的产生 ...