Introduction 为了提取两个特征之间的相关性,设计了Relation Module(RM)来计算相关性向量; 为了减小背景干扰,关注局部的信息区域,采用了Relation-Guided ...
Introduction Motivation: 当前的reid存在语义不对齐的问题,如下图: 图 a 显示了不同图片的相同位置对应了行人的不同身体部位 图 b 显示了不同图片呈现的部位不一样,有些是正面有些是背面等。 Contribution: 提出了一个语义对齐网络 Semantics Aligning Network,SAN ,介绍了对齐纹理生成子任务。该网络包含一个ReID编码器SA En ...
2020-06-21 15:04 0 606 推荐指数:
Introduction 为了提取两个特征之间的相关性,设计了Relation Module(RM)来计算相关性向量; 为了减小背景干扰,关注局部的信息区域,采用了Relation-Guided ...
Introduction 本文有如下3个贡献: ① 提出了一个自下而上(bottom-up)的聚类框架(BUC)来解决无监督的ReID问题; ② 采用repelled损失来优化模型,repell ...
Introduction 本文主要提出了高效且容易实现的STA框架(Spatial-Temporal Attention)来解决大规模video Reid问题。框架中融合了一些创新元素:帧选取、判别 ...
参考旷视研究院推文【传送门】 Introduction (1)Motivation: 遮挡行人重识别(Occluded Person ReID)更具有挑战性: ① 受到遮挡的影响,图像的判别信息更少,更容易匹配到错误的行人; ② 基于身体部位之间的特征信息做匹配虽然有效,但在被遮挡 ...
Introduction (1)Motivation: 解决跨模态reid的方法主要有两类:模态共享特征学习(modality-shared feature learning)、模态特定特征补偿(modality-specific feature compensation)。模态共享特征学习 ...
本文提出的方法思想是利用属性信息来挖掘各个局部特征的权重,如下图所示。 网络框架如下图。框架对人体的六组属性进行了区分:性别&年龄、头部、上半身、下半身、鞋子、背包拎包等,具体见下表。通 ...
Introduction 本文主要解决RGB-IR跨模态匹配问题。贡献主要有三部分组成: ① 提出了 Hierarchical Cross-Modality Disentanglement(Hi- ...
Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese ...