导论 自然语言处理,NLP,接下来的几篇博客将从四方面来展开: (一)基本概念和基础知识 (二)嵌入Embedding (三)Text classification (四)Language Models (五)Seq2seq/Transformer/BERT ...
目录 Seq Seq介绍 原理解析和进化发展过程 Seq Seq的预处理 seq seq模型预测 一句话简介: 年提出的Seq Seq Sequence to Sequence , 就是一种能够根据给定的序列,通过特定的方法生成另一个序列的方法。 一般用于机器翻译,图片描述,对话等场景。早期基本上基于LSTM,后面发展使用attention。 一 Seq Seq介绍 来源:所谓最早由两篇文章独立地 ...
2020-06-20 10:13 0 604 推荐指数:
导论 自然语言处理,NLP,接下来的几篇博客将从四方面来展开: (一)基本概念和基础知识 (二)嵌入Embedding (三)Text classification (四)Language Models (五)Seq2seq/Transformer/BERT ...
1. Attention与Transformer模型 Attention机制与Transformer模型,以及基于Transformer模型的预训练模型BERT的出现,对NLP领域产生了变革性提升。现在在大型NLP任务、比赛中,基本很少能见到RNN的影子了。大部分是BERT(或是其各种变体 ...
本文基于Pytorch实现,省略细节专注于seq2seq模型的大体框架 并参考 https://github.com/bentrevett/pytorch-seq2seq (本文的大多图片都来源于此) 介绍 大部分的NLP中的Seq2seq模型都是使用的encoder-decoder框架 ...
网络输入是一个序列,一句话,图像的某一行,都可以认为是一个序列, 网络输出的也是一个序列。 RNN的架构 我们把所有的输出o连起来,就成了一个序列。 rnn有一些缺点,lstm可以加入一个 ...
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled ...
一、Seq2Seq简介 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列。Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 很多自然语言处理任务 ...
2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习网 ...
目录 背景介绍 双向解码 基本思路 数学描述 模型实现 训练方案 双向束搜索 代码参考 思考分析 文章小结 在文章《玩转Keras之seq2seq自动生成标题》中我们已经 ...