使用python编写Spark Streaming实时处理Kafka数据的程序,需要熟悉Spark工作机制和Kafka原理。 1 配置Spark开发Kafka环境 首先点击下载spark-streaming-kafka,下载Spark连接Kafka的代码库。然后把下载的代码库放到目录/opt ...
做爬虫的时候我们经常会遇到这么一个问题: 网站的数据是通过 Ajax 加载的,但是 Ajax 的接口又是加密的,不费点功夫破解不出来。这时候如果我们想绕过破解抓取数据的话,比如就得用 Selenium 了,Selenium 能完成一些模拟点击 翻页等操作,但又不好获取 Ajax 的数据了,通过渲染后的 HTML 提取数据又非常麻烦。 或许你会心想:要是我能用 Selenium 来驱动页面,同时又能 ...
2020-06-12 14:42 0 683 推荐指数:
使用python编写Spark Streaming实时处理Kafka数据的程序,需要熟悉Spark工作机制和Kafka原理。 1 配置Spark开发Kafka环境 首先点击下载spark-streaming-kafka,下载Spark连接Kafka的代码库。然后把下载的代码库放到目录/opt ...
实现代理回调方法(处理数据) 三. 三种消息传输方式:(看情况使用) a.至多一次 (会发生消息丢 ...
前言:作为一个程序猿,总是能不时地听到各种新技术名词,大数据、云计算、实时处理、流式处理、内存计算… 但当我们听到这些时髦的名词时他们究竟是在说什么?偶然搜到一个不错的帖子,就总结一下实时处理和流式处理的差别吧。 正文:要说实时处理就得先提一下实时系统(Real-timeSystem ...
一、大数据实时处理有什么意义呢? 我们得到数据可以进行数据分析,利用数据统计方法,从错综复杂的数据关系中梳理出事物的联系,建立一些BI(Business Intelligence)报表,对一些数据的有用信息进行可视化呈现,供我们进行分析和决策。 二、数据实时处理能做什么? 1)实时 ...
Spark是一个实时处理框架 Spark提供了两套实施解决方案:Spark Streaming(SS)、Structured Streaming(SSS) 然后再结合其它框架:Kafka、HBase、Flume、Redis 项目流程:架构分析、数据产生、数据 ...
正式开始:基于spark流处理框架的学习 使用Flume+Kafka+SparkStreaming进行实时日志分析:如何实时地(准实时,每分钟分析一次)收集日志,处理日志,把处理后的记录存入Hive中。 Flume会实时监控写入日志的磁盘,只要有新的日志写入,Flume就会将日志 ...
这个Python脚本是用来对实时文件的内容监控,比如 Error 或者 time out 字段都可以进行自定义;算是我的第一个真正的Python脚本,自己感觉还是比较臃肿,不过打算放到blog上记录一下(还是初学者,大神们勿喷哈),真心希望博友们能够再指点一下(现在记录每次的文件大小值是输出 ...
1 框架一览 事件处理的架构图如下所示。 2 优化总结 当我们第一次部署整个方案时,kafka和flume组件都执行得非常好,但是spark streaming应用需要花费4-8分钟来处理单个batch。这个延迟的原因有两点,一是我们使用DataFrame来强化数据,而强化 ...