主成分分析(PCA)是一种常用于减少大数据集维数的降维方法,把大变量集转换为仍包含大变量集中大部分信息的较小变量集。 减少数据集的变量数量,自然是以牺牲精度为代价的,降维的好处是以略低的精度换取简便。因为较小的数据集更易于探索和可视化,并且使机器学习算法更容易和更快地分析数据,而不需处理无关变量 ...
digits是一个手写数字的数据集,我们可以使用Python的数据可视化库,比如matplotlib,来查看这些手写数字图像。 示例 显示digits.images中的手写数字图像。 输出 我们也可以使用digits.target中的目标值标记digits.images图像格式的样本数据,并显示。 示例 显示digits.images中的前 个手写数字图像,并用对应的目标值标记图像。 显示: ...
2020-06-18 17:12 0 780 推荐指数:
主成分分析(PCA)是一种常用于减少大数据集维数的降维方法,把大变量集转换为仍包含大变量集中大部分信息的较小变量集。 减少数据集的变量数量,自然是以牺牲精度为代价的,降维的好处是以略低的精度换取简便。因为较小的数据集更易于探索和可视化,并且使机器学习算法更容易和更快地分析数据,而不需处理无关变量 ...
现在每天产生的数据都是海量的,这些数据中既有高质量的也有很多垃圾,如何从这些海量的数据中洞察出这些数据的内在联系是我们机器学习的核心内容。如果光把数据丢在大家的面前,咱们肯定是无感的,无法获取这些数据的意义。为了能够更加直观的了解这些数据的一些特征,例如数据的分布情况,数据的趋势和走势,数据之间 ...
安装matplotlib和seaborn https://blog.csdn.net/Jia_jinjin/article/details/80428598 seaborn pairplot:特征两两对比 参数说明: data:数据。 g = sns.pairplot(data ...
1.决策树 决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。通过学习样本得到一个决策树,这个决策树能够对新的数据给出正确的分类 ...
一、可视化方法 条形图 饼图 箱线图(箱型图) 气泡图 直方图 核密度估计(KDE)图 线面图 网络图 散点图 树状图 小提琴图 方形图 三维图 二、交互式工具 Ipython、Ipython notebook Plotly ...
背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维。陆续使用过plotly、seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发 ...
1. 安装和文档 官方文档 为了方便显示图像,还使用了ipython qtconsole方便显示。具体怎么弄网上搜一下就很多教程了。 pyplot模块是提供操作matplotlib库的经典Python接口。 2. 初探pyplot plot()的参数表 ...
https://zhuanlan.zhihu.com/p/88528732 在各种经营分析报告中,我们常常会看到YTD,YOY这样的统计指标,这样的数据计算并不难,尤其是在PowerBI中,因为有时间智能函数的帮助,大大简化了这些计算,从而快速满足定期的报告需求。 下面就给你列出这些常用 ...